MATH 226: Differential Equations
Some Notes on Assignment 2/

Find a power series solution for each of the following differential equations where

y=ao+ax+ar® 4+ ...+ ap_12" "+ apx” + app12™ 4 app0x™ T 4
and y' = a1 + 2a9x + 3azz? + ... + (n 4+ Dap 2™ + ...

1. ¥’ = 3 — 2y which we can write as y’ +2y” =3
Solution: The constant term on each side is 3; thus a; + 2ag = 3 or ag = 3*% For n > 1, the
coefficient of 2™ on the left is (n + 1)a,+1 + 2a,, and this difference must be 0. Thus
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apy1 = —2 is our recurrence relation for n > 1
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We can write the solution as the power series
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where a; = 3 — 2ag. There are other equivalent ways to write this power series; for example, in
terms of ag. One form would begin

4 2 2 4
y= a+(3—2a)x+(—3+2a)x2+<2 - 3a> x3+<—1 + 3a> x4+<5 - 15a) 25+, where a = ag = y(0)

but it’s hard to see a general pattern here.
Note that we can obtain an exact solution using the integrating factor e2*. We obtain
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Solution: The right hand side has the power series
x4+y=ao+ (a1 + 1z + ast® + . ap_12" "+ apa” + Q1™ 4 an+2xb+2 + ...
Comparing coeflicients of like terms, we have
ay = ag,2a9 = a1 + 1,3a3 = ag,4aq = az, ....(n + L)ap41 = an, ...
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So a; = agp, a2 =

a . .
Apy1 = ﬁ, for n > 3 is the recurrence relation.
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We have the power series (with ag = a)
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which exactly the same as the solution obtained by treating ¥y’ = x + y as a first order linear

differential equation and using an integrating factor.



3.y =xy
Solution: Here
Ty = a4+ a1z + asx® + azx* + ...+ an_12" + ..

and
y' = aj + 2azx + 3aszt... + (n+ Dapr1a™ + ...

Equating coefficients of the x™ term:
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All the terms with even index will be multiples of ag
All the terms with odd index will be multiples of a; but a; = 0 since a; is the constant term in y’
and 0 is the constant term in xy. Thus all odd terms are 0 and

ag ao ag ay agp agp

2 M T T T g T exdax2 23 x3l

ao

and, in general as, = ————
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Note that we can obtain an exact solution by separation of variables
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Now the power series for e* /2 is
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4. ¥y +y=0s0y" = —y.
Solution: Note that {sinx,cosz} is a linearly independent pair of solutions so every solution
is a linear combination of these two. Our power series solution should be consistent with this
observation.
Equating coefficients of like degree terms, we have
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The even degree terms will be multiples of ag:
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The odd degree terms will be multiples of a;:
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Thus the solution has the form
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y=ao X ax X = agCcosX + ajp sinx
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5. zy" +y +xy=0
Solution:
Coeflicient of ™ in xy is ap—1
Coefficient of ™ in ¢/ is (n + 1)an4+1



Coefficient of 2™ in zy” is (n + 1)(n)an41
Thus coefficient of 2™ in zy” +v' +xy is (n+1)(n)ant1 +(n+1)ani1+an—1 = (n+1)2an11 +an_1
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So the recurrence relation is a, 11 = 7712
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The constant term in the power series is a; and the constant term in 0 is 0 so a; and consequently
all the odd indexed terms will be 0. For the even indexed terms (using ¢ = ag), we have
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and the power series solution is



