7.3 Bifurcation Exercises Feedback Problems: 12, 15, 17

12.(a) Below we sketch some nullclines, corresponding to $\alpha = 2,8/3$ and 10/3.

(b) The critical points are solutions of

$$3\alpha/2 - y = 0$$
$$-4x + y + x^2 = 0.$$

The solutions of these equations are $(2 \pm \sqrt{4 - 3\alpha/2}, 3\alpha/2)$ and exist for $\alpha \le 8/3$.

(c) For $\alpha = 2$, the critical points are (1,3) and (3,3). The Jacobian matrix is

$$\mathbf{J}(x,y) = \left(\begin{array}{cc} 0 & -1 \\ -4 + 2x & 1 \end{array} \right).$$

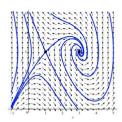
At (1,3),

$$\mathbf{J}(1,3) = \left(\begin{array}{cc} 0 & -1 \\ -2 & 1 \end{array}\right).$$

The eigenvalues are $\lambda = -1, 2$. Since they are of opposite sign (1,3) is a saddle, which is unstable. At (3,3),

$$\mathbf{J}(3,3) = \left(\begin{array}{cc} 0 & -1 \\ 2 & 1 \end{array}\right).$$

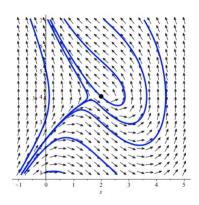
The eigenvalues are $\lambda = (1 \pm i\sqrt{7})/2$. Therefore, (3,3) is an unstable spiral.



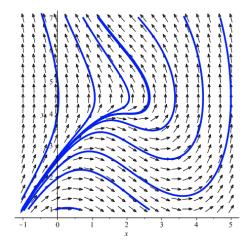
(d) The bifurcation value is $\alpha_0=8/3$. At this value α_0 , the critical point is (2,4). The Jacobian matrix is

$$\mathbf{J}(2,4) = \left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array} \right).$$

The eigenvalues are $\lambda=0,1.$



(e) Below we show the phase portrait for $\alpha=3.$



15.(a) The equation x' = 0 implies x = -3 or x - y = 1. The equation y' = 0 implies y = 1 or $x + \alpha y = -1$. Solving these equations, we see that the critical points are (2, 1), (-3, 1), $(-3, 2/\alpha)$, and $((-1 + \alpha)/(1 + \alpha), -2/(1 + \alpha))$.

(b) When $\alpha_0 = 2$, the second and third critical points listed above coincide. When $\alpha_0 = -3$, the first and fourth critical points listed above coincide, but here we are only considering $\alpha > 0$. Therefore, $\alpha_0 = 2$.

(c) Here, we have F(x,y) = (3+x)(1-x+y) and $G(x,y) = (y-1)(1+x+\alpha y)$. Therefore, the Jacobian matrix for this system is

$$\mathbf{J}(x,y) = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix} = \begin{pmatrix} -2 - 2x + y & 3 + x \\ y - 1 & 1 + x + 2\alpha y - \alpha \end{pmatrix}.$$

We will look at the linear systems near the second and third critical points above, namely (-3,1) and $(-3,2/\alpha)$. Near the critical point (-3,1), the Jacobian matrix is

$$\mathbf{J}(-3,1) = \begin{pmatrix} F_x(-3,1) & F_y(-3,1) \\ G_x(-3,1) & G_y(-3,1) \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & -2+\alpha \end{pmatrix}$$

and the corresponding linear system near (-3,1) is

$$\frac{d}{dt} \left(\begin{array}{c} u \\ v \end{array} \right) = \left(\begin{array}{cc} 5 & 0 \\ 0 & -2 + \alpha \end{array} \right) \left(\begin{array}{c} u \\ v \end{array} \right)$$

where u = x + 3 and v = y - 1. Near the critical point $(-3, 2/\alpha)$, the Jacobian matrix is

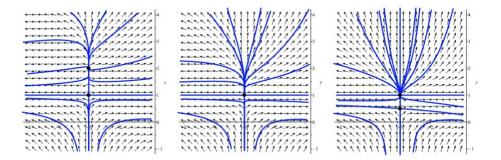
$$\mathbf{J}(-3, 2/\alpha) = \begin{pmatrix} F_x(-3, 2/\alpha) & F_y(-3, 2/\alpha) \\ G_x(-3, 2/\alpha) & G_y(-3, 2/\alpha) \end{pmatrix} = \begin{pmatrix} 4 + 2/\alpha & 0 \\ -1 + 2/\alpha & 2 - \alpha \end{pmatrix}$$

and the corresponding linear system near $(-3, 2/\alpha)$ is

$$\frac{d}{dt} \left(\begin{array}{c} u \\ v \end{array} \right) = \left(\begin{array}{cc} 4 + 2/\alpha & 0 \\ -1 + 2/\alpha & 2 - \alpha \end{array} \right) \left(\begin{array}{c} u \\ v \end{array} \right)$$

where u=x+3 and $v=y-2/\alpha$. The eigenvalues for the linearized system near (-3,1) are given by $\lambda=5,-2+\alpha$. The eigenvalues for the linearized system near $(-3,2/\alpha)$ are given by $\lambda=4+2/\alpha,2-\alpha$. In part (b), we determined that the bifurcation point was $\alpha_0=2$. Here, we see that if $\alpha>2$, then (-3,1) will have two positive eigenvalues associated with it, and, therefore, be an unstable node, while $(-3,2/\alpha)$ will have eigenvalues of opposite signs, and, therefore, by an unstable saddle point. If $\alpha<2$, then (-3,1) will have eigenvalues of the opposite sign, and, therefore, be an unstable saddle point, while $(-3,2/\alpha)$ will have two positive eigenvalues, and, therefore, be an unstable node.

(d) The phase portraits below are for $\alpha = 1, 2$ and 4, respectively.



17.(a) The critical points need to satisfy the system of equations

$$x(4-x-y) = 0$$

$$y(2+2\alpha-y-\alpha x) = 0.$$

The four critical points are (0,0), $(0,2+2\alpha)$, (4,0), and (2,2).

(b) The Jacobian matrix is given by

$$\mathbf{J}(x,y) = \begin{pmatrix} 4 - 2x - y & -x \\ -\alpha y & 2 + 2\alpha - 2y - \alpha x \end{pmatrix}.$$

Therefore, at (2,2),

$$\mathbf{J}(2,2) = \left(\begin{array}{cc} -2 & -2 \\ -2\alpha & -2 \end{array} \right).$$

For $\alpha = 0.75$,

$$\mathbf{J}(2,2) = \left(\begin{array}{cc} -2 & -2 \\ -3/2 & -2 \end{array} \right).$$

The eigenvalues of this matrix are $\lambda = -2 \pm \sqrt{3}$. Since both of these eigenvalues are negative, for $\alpha = 0.75$, (2, 2) is a stable node, which is asymptotically stable. For $\alpha = 1.25$,

$$\mathbf{J}(2,2) = \left(\begin{array}{cc} -2 & -2 \\ -5/2 & -2 \end{array} \right).$$

The eigenvalues of this matrix are $\lambda = -2 \pm \sqrt{5}$. Since these eigenvalues are of opposite sign, for $\alpha = 1.25$, (2,2) is a saddle point which is unstable. In general, the eigenvalues at (2,2) are given by $-2 \pm 2\sqrt{\alpha}$. The nature of the critical point will change when $2\sqrt{\alpha} = 2$; that is, at $\alpha_0 = 1$. At this value of α , the number of negative eigenvalues changes from two to one.

(c) From the Jacobian matrix in part (b), we see that the approximate linear system is

$$\left(\begin{array}{c} u \\ v \end{array}\right)' = \left(\begin{array}{cc} -2 & -2 \\ -2\alpha & -2 \end{array}\right) \left(\begin{array}{c} u \\ v \end{array}\right).$$

- (d) As shown in part (b), the value $\alpha_0 = 1$.
- (e) In the three phase portraits, we take $\alpha = 0.75, 1$ and 1.25, respectively.

