MATH 225: Notes on Assignment 18

7.2 Almost Linear Systems
Practice Problems: 1%, 3%, 6%, 10*, 12*, 13*, 16*, 25, 26
Feedback Problems: 12%, 16*, 25

1.(a) The equation dz/dt = 0 implies y = 2z. The equation dy/dt = 0 implies y = 2.
Therefore, for these equations to both be satisfied, we need 2z = z? which means = = 0 or
x = 2. Thus the two critical points are (0,0) and (2,4).

(b) Here, we have F(x,y) = —2z +y and G(z,y) = 2> — y. Therefore, the Jacobian matrix

for this system is
_(F F,\ _ (-2 1

Near the critical point (0,0), the Jacobian matrix is

_ ( F=(0,0)
J(O’O) N ( GrE ’ ) GyE

and the corresponding linear system near (0, 0) is

()= ) (0)

Near the critical point (2,4), the Jacobian matrix is
_( F(2,4) F24)\_(-2 1
J(2’4) n ( G1(214) Gy(274) N 4 -1

and the corresponding linear system near (2,4) is

dfu)_ (-2 1 u
dt\ v /) 4 —1 v
whereu =z —2and v =y — 4.

(c) The eigenvalues of the linear system near (0,0) are A = —1, —2. From this, we can con-
clude that (0,0) is an asymptotically stable node for the nonlinear system. The eigenvalues
of the linear system near (2,4) are (—3 %+ v/17)/2. Since one of these eigenvalues is positive
and one is negative, the critical point (2,4) is an unstable saddle point for the nonlinear
system.

(d)

(e) The basin of attraction for the asymptotically stable critical point (0,0) is bounded on
the right by trajectories heading towards the critical point (2,4).



3.(a) To find the critical points, we need to solve the equations * = —y? and z = —2y. In
order for these two equations to be satisfied simultaneously, we need 3> = 2y. Therefore,
y =0 or y = 2. Therefore, the two critical points are (0,0) and (—4,2).

(b) Here, we have F(z,y) = = + 32 and G(x,y) = = + 2y. Therefore, the Jacobian matrix

for this system is
F, F, 1 2
J(I,y)=<G1 GZ):(I Qy)

Near the critical point (0, 0), the Jacobian matrix is
([ F;(0,0) F,(0,00\ (10
300=( gl a0 )=(1 2

and the corresponding linear system near (0, 0) is
dfz\_ (10 x
d\y) \12 y )

Near the critical point (—4,2), the Jacobian matrix is
_( Fe(-42) F(-42))_(1 4
I(=42) = ( G.(—4,2) Gy(—42) )=\ 1 2

and the corresponding linear system near (—4,2) is

S(0)-(C)

where u =z +4and v =y —2.

(c¢) The eigenvalues of the linear system near (0,0) are A = 1,2. From this, we can conclude
that (0,0) is an unstable node for the nonlinear system. The eigenvalues of the linear system
near (—4,2) are A = (3 & v/17)/2. Since one of these eigenvalues is positive and one is
negative, the critical point (—4,2) is an unstable saddle point for the nonlinear system.

(d)

6.(a) To find the critical points, we need to solve the equations z — 22 — 2y = 0 and

3y — 2y — 2y* = 0. Solving this system of equations, we see that the critical points are given
by (Oa O)a (07 3/2)7 (1’ 0)3 and (_la 2)



(b) Here, we have F(z,y) = z—x%*—xy and G(z,y) = 3y —xy—2y>. Therefore, the Jacobian
matrix for this system is

([ F F,\ _ [(1-2z—y -

Near the critical point (0,0), the Jacobian matrix is

J(0,0):((l) g)

and the corresponding linear system near (0, 0) is

al)=(s)(0)

Near the critical point (0,3/2), the Jacobian matrix is

3032 - (T3 9

and the corresponding linear system near (0, 3/2) is

a(0)-(5k 5)(0)

where u = z and v = y — 3/2. Near the critical point (1,0), the Jacobian matrix is

J(1,0) = ( _(1) _é >

and the corresponding linear system near (1,0) is

a()=(5 7))

where u =z — 1 and v = y. Near the critical point (—1,2), the Jacobian matrix is

3(-1,2)= ( B )

and the corresponding linear system near (—1,2) is

ale)=(2 ) ()

whereu =z +1landv=y—2.

(c) The eigenvalues of the linear system near (0,0) are A = 1,3. From this, we can conclude
that (0, 0) is an unstable node for the nonlinear system. The eigenvalues of the linear system

near (0,3/2) are A\ = —1/2, —3. From this, we can conclude that (0,3/2) is an asymptotically
stable node for the nonlinear system. The eigenvalues of the linear system near (1,0) are
A = —1,2. From this, we can conclude that (1,0) is a saddle point for the nonlinear system.
The eigenvalues of the linear system near (—1,2) are A = (=3 =+ v/17)/2. From this, we can
conclude that (—1,2) is a saddle point for the nonlinear system.

(d)

(e) The basin of attraction for the asymptotically stable point (0,3/2) consists of the first
quadrant combined with trajectories heading into the second quadrant from (0,0) and to-
wards (0,3/2).



10.(a) To find the critical points, we need to solve the equations z+z?+y* = 0 and y—zy = 0.
Solving these equations, we find that the critical points are (0,0) and (—1,0).

(b) Here, we have F(z,y) = = + 2° + y* and G(z,y) = y — zy. Therefore, the Jacobian
matrix for this system is

([ F, F,\ _ [ 1+2z 2
Near the critical point (0,0), the Jacobian matrix is

J(0,0):(é (1))

Near the critical point (—1,0), the Jacobian matrix is
-1 0
J(—l,O)_< 0 3).

(¢) The eigenvalues of the linear system near (0,0) are A = 1. From this, we can conclude
that (0,0) is an unstable node or spiral point for the nonlinear system. The eigenvalues of

the linear system near (—1,0) are A = —1,3. From this, we can conclude that (—1,0) is a
saddle point for the nonlinear system.

()

12.(a) To find the critical points, we need to solve the equations (2 + z)siny = 0 and
1—x—cosy=0. If + = —2, then we must have cosy = 3, which is impossible. Therefore,
siny = 0, which implies that y = nm, n = 0,£1,£2,... Based on the second equation,
z =1— cosnm. It follows that the critical points are located at (0,2k7) and (2, (2k + 1)7)
where £ =0,£1,+2, ...

(b) Here, we have F'(z,y) = (2+z)siny and G(z,y) = 1 —x —cosy. Therefore, the Jacobian
matrix for this system is

_( F. F,\ _(siny (2+z)cosy
I(z,y) = ( G, G, ) - ( -1 siny ’

Near the critical points (0,2k7), the Jacobian matrix is

3(0, 2k7) = ( e )

Near the critical point (2, (2k + 1)7), the Jacobian matrix is
0 —4
J(2,(2k + D)) = ( o ) .

(c) The eigenvalues of the linear system near (0, 2k7) are A = 41/2i. Based on this informa-
tion, we cannot make a conclusion about the nature of the critical points near (0,2k) for
the nonlinear system. The eigenvalues of the linear system near (2, (2k + 1)7) are A = £2.
From this, we can conclude that the critical points (2, (2k + 1)7) are saddles.
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Upon looking at the phase portrait, we see that the critical points (0,2k7) are centers.

13.(a) To find the critical points, we need to solve the equations z —y*> = 0 and y — 22 = 0.
Substituting y = x? into the first equation, results in z —2* = 0 which has real roots x = 0, 1.
Therefore, the critical points are (0,0) and (1,1).

(b) Here, we have F(z,y) = z — 3 and G(z,y) = y — 2. Therefore, the Jacobian matrix

for this system is
_( F, F,\ _ 1 -2
e =( 66 )=( V)

Near the critical point (0,0), the Jacobian matrix is

J(0,0):((l) ?)

Near the critical point (1, 1), the Jacobian matrix is

I(1,1) = ( o ‘f)

(c¢) There is a repeated eigenvalue A = 1 for the linear system near (0,0). Based on this
information, we cannot make a conclusion about the nature of the critical point near (0,0)
for the nonlinear system, only that it is unstable and it is either a node or a spiral. The
eigenvalues of the linear system near (1,1) are A = 3, —1. From this, we can conclude that
the critical point (1,1) is a saddle.

(d)

Upon looking at the phase portrait, we see that the critical point (0, 0) is an unstable node.

16.(a) To find the critical points, we need to solve the equations

y+z(l—22—9%) = 0
—z+y(l—-2*—y?*) = 0.

Multiplying the first equation by y, the second equation by z and subtracting the second
from the first, we conclude that z2 + y% = 0. Therefore, the only critical point is (0,0).



(b) Here, we have F(z,y) = y+2(1—22—y?) and G(z,y) = —z +y(1 — 22 — y?). Therefore,
the Jacobian matrix for this system is

([ F. F,\ _ [ 1-3z*—4 1—2zy
J“’”‘(GI Gy)_( “1-2zy 1-a?-32 )"

Near the critical point (0,0), the Jacobian matrix is

3(0,0) = < _} i)

(c) The eigenvalues of the linear system near (0,0) are A = 1 + 4. Therefore, (0,0) is an
unstable spiral point for the nonlinear system.

(d)
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25. The characteristic equation for the coefficient matrix is A2 + 1 = 0, which has roots
A = +i. Therefore, the critical point at the origin is a center. For the perturbed matrix, the
characteristic equation is A2 —2eA+1+¢€? = 0. This equation has roots A = e+i. Therefore,
as long as € # 0, the critical point of the perturbed system is a spiral point. Its stability
depends on the sign of e.

26. The characteristic equation for the coefficient matrix is (A + 1)> = 0, which has the
repeated root A = —1. Therefore, the critical point is an asymptotically stable node. For
the perturbed matrix, the characteristic equation is A2 + 2\ + 1 + € = 0. This equation has
roots A = —1 4 y/—¢. If € > 0, then the roots are complex and the critical point is a stable
spiral. If € < 0, then the roots are real and both negative, in which case the critical point
remains a stable node.



7.3 Competing Species
Practice Problems: 1,3, 5, 10
Feedback Problems: 1, 3, 5, 10

1.(a)
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(b) The critical points are solutions of the system
z(15—2z—05y) = 0
y(2—y—0.75z) = 0.

The four critical points are (0,0), (0,2), (1.5,0), and (0.8,1.4).

(c) The Jacobian matrix is

_(3/2-2-y/2  -z/2
J(:c,y)—( _3y/4y 2—3z/4—2y)'

3(0,0) = < 3/3 g)

The associated eigenvalues and eigenvectors are \; = 3/2, v; = (1,0)T and \y = 2, vy =
(0,1)T. The eigenvalues are positive. Therefore, the origin is an unstable node. At (0,2),

3(0,2) = < _;ﬁ o )

The associated eigenvalues and eigenvectors are \; = 1/2, vi = (1,—0.6)7 and Xy = —2,
vy = (0,1)T. The eigenvalues have opposite sign. Therefore, (0,2) is a saddle, which is
unstable. At (1.5,0),

At (0,0),

—-1.5 —0.75
I(1.5,0) = ( 0 0.875 ) ’
The associated eigenvalues and eigenvectors are \; = —1.5, v; = (1,0)T and A\, = 0.875,

vy = (—0.31579,1)7. The eigenvalues are opposite sign. Therefore, (1.5, 0) is a saddle, which
is unstable. At (0.8,1.4),

-08 —-04
J(0.8,1.4) = ( ~-1.05 -14 )
The associated eigenvalues and eigenvectors are \; = (—11++/51)/10, v; = (1, (3—+/51)/4)T
and \y = (—11—+/51)/10, v5 = (1,(3++/51)/4)T. The eigenvalues are negative. Therefore,

(0.8,1.4) is a stable node, which is asymptotically stable.
(de)

(f) Except for initial conditions lying on the coordinate axes, all trajectories converge to the
stable node (0.8,1.4).
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(b) The critical points are solutions of the system

z(1.5— 0.5z —y)
y(2—y—1.1252) = 0.

|
o

The four critical points are (0,0), (0,2), (3,0), and (4/5,11/10).

(¢) The Jacobian matrix is

_(32—z—y -
J(z,y) = ( —1.125y 2-2y—1.125z ) :

J(O,O):(B/g g)

The associated eigenvalues and eigenvectors are A\; = 3/2, vi = (1,0)7 and Ay = 2, vo =
(0,1)T. The eigenvalues are positive. Therefore, the origin is an unstable node. At (0,2),

(12 0
3(0,2) = ( "o/ 2 )
The associated eigenvalues and eigenvectors are \; = —1/2, v; = (1,—3/2)T and \; = —2,

vy = (0,1)T. The eigenvalues are both negative. Therefore, (0,2) is a a stable node, which
is asymptotically stable. At (3,0),

3(3,0) = ( ‘3/3 711‘/2 ) .

The associated eigenvalues and eigenvectors are \; = —3/2, v; = (1,0)7 and \y = —11/8,
vy = (—24,1)T. The eigenvalues are both negative. Therefore, this critical point is a stable
node, which is asymptotically stable. At (4/5,11/10),

At (0,0),

[ =25 —4/5
J(4/5,11/10) = ( -99/80 —11/10 ) ’
The associated eigenvalues and eigenvectors are \; = —3/4 + /445/20, v; = (1,(7 —

V/445)/16)T and Ay = —3/4 — /445/20, vo = (0, (7 + +/445)/16)T. The eigenvalues are
of opposite sign. Therefore, (4/5,11/10) is a saddle, which is unstable.

(d)e)

(f) Trajectories approaching the critical point (4/5,11/10) form a separatrix. Solutions on
either side of the separatrix approach either (3,0) or (0,2).



5.(a)
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(b) The critical points are solutions of the system

z(l—z—y) = 0
y(L.5—y—2)

The three critical points are (0,0), (0,3/2), and (1,0).

I
e

(¢) The Jacobian matrix is

[ 1-2z—y -z
J(z,y)—( -y 1.572y71)'

w00-(},2)

The associated eigenvalues and eigenvectors are A, = 1, v; = (1,0)7 and Ay = 1.5, v, =
(0,1)T. The eigenvalues are positive. Therefore, the origin is an unstable node. At (0,3/2),

J(0,3/2) = ( :;g 73/2 )

The associated eigenvalues and eigenvectors are Ay = —1/2, vi = (1,—3/2)T and X\, = —3/2,
vy = (0,1)T. The eigenvalues are both negative. Therefore, (0,3/2) is a stable node, which
is asymptotically stable. At (1,0),

J(1,0) = < _(1) 1_1 )

The associated eigenvalues and eigenvectors are \; = —1, vi = (1,0)7 and Ay = 1/2,
vy = (1,—3/2)T. The eigenvalues are of opposite sign. Therefore, this critical point is a
saddle, which is unstable.

At (0,0),

(dye)
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(f) All trajectories (not starting on the z-axis) converge to the stable node (0, 1.5).



10.(a) The critical points are solutions to the system:

—y =0
—vy —z(z—0.15)(z—3) = 0.

Setting y = 0, the second equation becomes z(z — 0.15)(z — 3) = 0. Therefore, the critical
points are (0,0), (0.15,0), and (3,0). The Jacobian matrix is

0 -1
I(zy) = ( ~322 4+ 6.3¢ — 045 — ) :

J(0,0)= ( 70.42 j > '

At (0,0),

The associated eigenvalues are A = —v/2++/7? + 1.8/2. Since the eigenvalues have opposite
sign, the origin is a saddle, which is unstable. At (0.15,0),

0 -1
3(0.15,0) = ( 04275 ) .

The associated eigenvalues are A = —vy/2 4+ /72 — 1.71/2. If ¥ — 1.71 > 0, then the eigen-
values are real. Since A\; Ay = 0.4275, both eigenvalues will have the same sign. Therefore,
the critical point is a node with its stability dependent on the sign of . If v2 — 1.71 < 0,
then the eigenvalues are complex conjugates. In that case, the critical point (0.15,0) is a
spiral, with its stability dependent on the sign of y. At (3,0),

13,0 = ( —8.5(; :»1y > '

The associated eigenvalues are A = —v/2 £ /72 + 34.2/2. Since the eigenvalues have oppo-
site sign, (3,0) is a saddle, which is unstable.

(b)

(c) Based on the phase portraits above, we can see that the value of 7 is above 1.5. Numerical
experiments show that the required value is about v =~ 1.90.



