
MATH 226 

Assignment 14: Project Two 

 

A Mathematical Model for the COVID-19 Pandemic 

 

 

Introduction The classic SIR model (see notes from Class 7) was developed in the 1920's and 

1930's. It has proven to be very useful in studying the dynamics of infectious diseases. The model 

yields the extremely important Threshold Theorem of Mathematical Epidemiology. 

 

 The SIR model partitions the population into three groups: Susceptibles, Infectives, and 

Removeds. The Susceptibles (S) are  those persons who are currently uninfected, but may become 

infected. The Infectives (I) are  those who are currently infected and capable of spreading the 

infection. The Removeds (R) are  persons who have had the disease and are dead, or have recovered 

and are permanently immune, or are isolated until death, recovery, or permanent immunity occur. 

A susceptible person might remain so or become infective through contact with an infected 

individual. An infective may stay infective or could enter the removed category.  

 

 
 

 The numbers of persons, S, I, and R, in each category change with time.  We will study  

mathematical models that  attempt to discover how these numbers fluctuate with respect to time, 

denoted as usual by t, and with respect to each other.  

 

 

 There are just a few fundamental assumptions of the SIR model: 

 

1)  The rate of change of the susceptible population depends on the number  of contacts 

between the Susceptible and the Infectives as well as the transmission rate (not every 

contact results in a Susceptible becoming infected). The SIR model posits that the 

number of contacts at any time is jointly proportional to the two populations. 

 

2) The rate at which Infectives become Removeds is proportional to the number of 

Infectives. 

 

The model also assumes that initially there are no removeds and that the time period of the 

epidemic is sufficiently short that we can regard the total population as constant. 

 

Mathematically, the SIR model is a system of three first order differential equations: 

 

𝑆′ =  − 𝛽 𝑆 𝐼    for some positive constant 𝛽 



𝐼′ =  𝛽 𝑆 𝐼 − 𝑟I  for some positive constant r 

𝑅′ = 𝑟 𝐼  

 

with initial conditions 𝑆(0) =  𝑆𝑜 , 𝐼 =  𝐼𝑜, 𝑅(0) = 0 

(The primes '  denote differentiation with respect to t ) 

 

 

 An important consequence of the SIR model is the Threshold Theorem: If 𝑆0 <  
𝑟

𝛽
 , then 

the number of infectives decreases monotonically to 0 while if 𝑆0 >  
𝑟

𝛽
  (the threshold), then the 

number of infectives will initially increase but later will decrease monotonically to zero. The 

number of susceptibles will approach a positive limiting value as time increases. 

 

 Epidemics can then be prevented, or controlled, by ensuring that the susceptible population 

is pushed below the threshold by such means as vaccination or quarantine.   

 

 One drawback of the SIR model is that we can not solve the system of differential equations 

to obtain explicit formulas for S, I and R as functions of t. We shall study the SIR model in greater 

depth later in the course. 

 

A Solvable Model. One of the major assumptions of the SIR model is that the rate at which the 

Susceptible population changes is jointly proportional to the S and I populations. It assumes then 

that if the number of Infectives doubles, then the number of contacts between Susceptibles and 

Infectives will double. There is a similar increase if the Susceptible population doubles. Our model 

for the COVID19 epidemic you will investigate changes this assumption: we maintain the idea 

that larger populations of Susceptibles and Infectives will produce more contacts, but not quite so 

dramatically . 

 

  The differential equations for this model are: 

𝑆′ =  − 𝛽 √𝑆 √𝐼    for some positive constant 𝛽 

𝐼′ =  𝛽 √𝑆 √𝐼 − 𝑟√𝐼  for some positive constant r 

𝑅′ = 𝑟 √𝐼  

 

with initial conditions 𝑆(0) =  𝑆𝑜 , 𝐼(0) =  𝐼𝑜 , 𝑅(0) = 0 

and S(t) + I(t) + R(t) = N(t) is the total population. 

 

Part 1: Deriving Conclusions from the Model 
 

1.   In a sentence or two, explain why the Susceptible population can not increase and the 

Removed population can not decrease. 

2. Show the equations of this model imply that the total population remains constants. 

[Hint: add them up.] 



3. Show that the number of Infectives can increase only when the number of Susceptibles 

exceeds 
𝑟2

𝛽2 and that infected population decreases when the susceptible population drops 

below 
𝑟2

𝛽2 .  Thus this model also exhibits a threshold phenomenon. 

4. Use the Chain Rule (or another argument) to show that the relationship between S and I 

satisfies the differential equation 
𝑑𝐼

𝑑𝑆
=

𝑟

𝛽
𝑆−1/2 − 1  

5. Solve the differential equation in Exercise 4 to show that I is a function of S of the form 

𝐼 = 2 
𝑟

𝛽
√𝑆 – S + C  for some constant C. 

6. Show that 𝐶 = 𝐼0 + 𝑆0 − 2 
𝑟

𝛽
√𝑆0 

7. Let 𝑆∗ =  
𝑟2

𝛽2 .  Show that we can write the relationship between I and S at every instant 

as  (∗)𝐼(𝑡) + 𝑆(𝑡) − 2√𝑆∗𝑆(𝑡) = 𝐼0 + 𝑆0 − 2 √𝑆∗𝑆0 

8. The basic reproduction number is 𝑅0 =
𝑆0

𝑆∗ .   Explain why the disease will die out if 0 

<𝑅0 < 1 while an epidemic will occur if 𝑅0 > 1. [We can interpret 𝑅0  as the number of 

additional infections induced into a susceptible population by a single infective 

individual. ] 

9. Suppose 𝑆0 >  𝑆∗ so an epidemic does occur. We are interested in the largest number 

𝐼𝑚𝑎𝑥   of infected people we will ever see; that's when the medical system will experience 

maximum stress on its staff and facilities. Show that I reaches its maximum when 𝑆 =

  𝑆∗  .    Use this fact and equation (*) of Exercise 7 to show 𝐼𝑚𝑎𝑥 =  𝐼𝑜 +

 (√𝑆0 − √𝑆∗)
2
 

10.  When the epidemic has run its course, there will be no infectives; that is, 

𝐼∞ =  lim
𝑡→∞

𝐼(𝑡) = 0.   We seek 𝑆∞ =  lim
𝑡→∞

= 𝑆(𝑡),    the number of Susceptibles 

who never succumbed to the disease. Explain why 𝑆∞ <  𝑆∗  <  𝑆0. 

11. Show that 𝑆∞ =  𝑆∗  [1 −   √(√
𝑆0

𝑆∗ − 1)

2

+  
𝐼0

𝑆∗]

2

 [This  calculation involves a fair 

amount of algebra but nothing very advanced]. 

12. Finally, determine that the total number of individuals who were ever infected is 𝐼0 +
 𝑆0 −  𝑆∞. 

 

 

Part 2: Investigate in Maple or MATLAB 

 

 Let's construct a Maple representation of this model an experiment 

with it.  The usual way to stipulate the first differential equation of the model 

in Maple would be to write something like 



Ode1 := S'(t) = - beta * sqrt(S(t)) * sqrt(I(t) 

but this will not quite work because Maple reserves the symbol I for its way 

to represent the pure imaginary i. You can replace I by something else, say 

Infectives or INF.  I used the letter J so my equations  look like 

Ode1 := S'(t) = - beta * sqrt(S(t)) * sqrt(J(t) 

Ode 2 :=  beta * sqrt(S(t)) * sqrt(J(t) – r * sqrt(J(t))  

 

Maple displays the differential equations as 

 
 

 

13. Now you can use the DEplot  command to see what the solutions might 

look graphically.   

 I suggest using 𝛽 =  .03 and r = 0.3 with J(0) = 11 and S(0) = 200. 

 

You should get a picture that looks something like: 

 
where the blue curve is the trajectory in the Susceptibles-Infectives plane. 

Note that there are still a positive number of Susceptibles left when the 

number of Infectives drops to 0. The red curve illustrates the situation when 

S(0) = 80.  You should generate these two cases. You should also display the 

graphs of Susceptibles and Infectives each as functions of t. The graph of 

Infectives as a function of t should look a lot like the ones you are seeing on 

TV. 



 

See ProjectTwoEpidemic.pdf for relevant MATLAB commands. 

 

14.  From the graphs, estimate S∞ˆ and the maximum number of Infectives at any 

time. Do these estimates match what you found in your earlier work? 

15.  Choose some other interesting values for 𝛽, 𝑟,  and the initial number of 

Susceptibles and Infectives. Report on your results.  

 

 

Part 3: Convert To a Solvable  Linear Model 

 

 One of the nicest features of this model is that it is possible to obtain 

the exact solutions of the differential equations so that we will have explicit 

for formulas for the numbers of Susceptibles, Infectives, and Removeds as 

functions of t. 

 The technique is to make a change of variables to obtain an equivalent 

system of linear differential equations. 

 In particular, let 𝑢 = √𝑠 = 𝑠1/2, and 𝑣 =  √𝐼 = 𝐼1/2 

 

16.  Show that these substitutions yield the equivalent system 

𝑢′ = −𝑏𝑣, v' = bu – s 

 

where 𝑏 =
𝛽

2
 and 𝑠 =  

𝑟

2
 

17.   Write this system in the form X' = AX + w where 𝑋 =  (
𝑢
𝑣

)  𝐰 =  (
0

−𝑠
). 

What does the 2 by 2 matrix A look like? 

 

18.   Show that the eigenvalues of A are purely imaginary and find the general 

solution to the homogeneous system X' = AX. 

 

19.  Verify that the solution for v(t) is  

𝑣(𝑡) =  √𝐼0 cos(𝑏𝑡) +  (√𝑆0 −
𝑠

𝑏
) sin(𝑏𝑡). 

 

20.  What is  the formula for u(t)? 

 

 

21. Since 𝑣 = √𝐼 and 𝑢 = √𝑆,  it is tempting to set 𝐼 = 𝑣2  and 𝑆 = 𝑢2 to get 

solutions to the original model.   This would not be quite right as the 



solution for 𝑣(𝑡) in (19) exhibits oscillatory behavior. Verify that the graph 

of 𝑣2 will look something like the picture below for our example: 

 
 

22.   Discuss why your earlier analysis of the model rules out a graph like the 

one above for the number of Infectives. 

 

 

23.  When the number of Infectives reaches 0, it remains there forever. Thus we 

amend our model to stop at the time t* when I(t*) = 0. Show that 𝑣(𝑡∗) = 0 

when 𝑡∗ =
1

𝑏
(𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 [

√𝐼0

√𝑆0−
𝑠

𝑏

]). Rewrite this expression for t* in terms 

of 𝛽 and r. 

 

24.  Compute t* for some different choices of the parameters 𝛽, 𝑟, 𝐼0, and 𝑆0. 

For the suggested values of 𝛽 and r,  show that if the initial number of 

Infectives is 11, then t* is about the same for So = 2450 (the Middlebury 

student body) as it is for So = 335 million (the U.S. Population) or 7.8 

billion (world population) . How does the estimate of t* change if the initial 

number of Infectives is only 1? For the suggested parameter values, the 

pandemic should end within 7 months. 

 

 

25.  Show that limiting value of t* as S0  increases without bound, for any choices 

of  𝛽, 𝑟,  and 𝐼0 , depends only on   𝛽; that is, find the duration of the epidemic 

as lim
𝑆0∞

1

𝑏
(𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 [

√𝐼0

√𝑆0−
𝑠

𝑏

]) in terms of 𝛽. 

 



26.   We hear a lot of "flattening the curve" for this COVID-19 pandemic by 

lowering the transmission rate; that is, making 𝛽 smaller by limiting contacts 

among people by social distancing and quarantines. From your work on (25) 

and earlier problems, show that decreasing 𝛽 increases the duration of the 

pandemic but lowers the maximum number of Infectives at any one time.  

 

 

 

 

 

Part 4: Modify The Model 

 

There are many ways this model could be made more realistic. For 

example, it assumes that the total population stays fixed during the pandemic. 

In the real world, there are births and there are deaths from other causes than 

the disease.  

 

The model also treats Removeds as a single group, but for many 

purposes, you might want to distinguish between those who recovered from 

the diseases and those who died from it.  Our model assumes that after you 

have recovered, you have immunity from the disease and cannot be infected 

again. We don't actually know if recovery from COVID-19 gives lifelong 

immunity or not to everyone. A certain percentage of Recovereds might rejoin 

the Susceptibles. 

 

There are also diseases for which there is are intermediate states 

between Susceptible and Infective. In the Infective state, you are not only sick 

but you can pass the disease on to others. There may be an intermediate stage , 

such as occurs for some people with COVID-19 where there would test 

positive for the virus but do not exhibit any symptoms yet are able to infect 

others. There could also be states for individuals who have the virus but are 

not yet infective to others. 

 

There are a myriad of other variations of epidemic models that could 

be formulated and studied. 

 

Choose a modification or two of our model that you believe makes it 

more realistic and investigate the consequences for the dynamic behavior of 

the system. Generally speaking, the more realistic the model, the less we are 



able to say about it analytically but we can certainly use Maple to do computer 

simulations. 

 

In another direction, you might determine better estimates for the values 

of 𝛽  and r from recently published/posted data. You could also test the 

validity of the model for a particular state or nation for which reliable data is 

available. 

 

This final part of the project provides opportunities for you to be more 

creative.  You might generate some important new insight into the COVID-

19 pandemic. 

  

 

 


