
Intrduction to Matlab

Professor Crodelle∗

Spring 2022

1 Introduction

What is MATLAB?

Matlab is a computational software program used widely in several areas of research in mathe-
matics and science. It works efficiently with large data and is a powerful numerical solver. It allows
users to quickly produce, analyze, and edit data and create quality graphics. It also has symbolic
computation capabilities.

1.1 Starting up MATLAB

Open Matlab by clicking on the icon. Matlab automatically creates a folder in Documents called
Matlab in which it will look for and save all files. I advise you to create a folder in your Google
Drive for Matlab code, so that you may have access to it from anywhere.

You might need to reset the directory in Matlab every time. When downloading
Matlab files for this course, always save them to the same directory.

1.2 Getting Help

Matlab provides help resources from within the program. You can access them by doing any of
the following:

• Click on the ‘Help’ icon in the ‘Resources’ section in the ‘Home’ tab to access the help
documentation file, or

• type the command >> doc into the command line and hit enter. (Try this!)

• Get help for a specific command by typing >> help commandName directly into your com-
mand line and hitting enter. This command will output a description of how to use the
commandName and a linked list of related commands. Try typing >> help linspace to see
this feature.

Matlab is very well documented, and many troubleshooting questions have been asked and
answered on the Mathworks website (http://www.mathworks.com) and by doing an internet
search.

Finally, do not forget to utilize each other and your professors as resources. Working together
with peers to learn a new software language is a great idea. You are welcome and encouraged to
ask Matlab questions during office hours.

∗Most of the content was prepared by Professor. Kubacki

1

http://www.mathworks.com

2 Command Practice

2.1 Arithmetic, variables, and your workspace

Arithmetic operations are very intuitive in Matlab. The arithmetic operations +,−,×,÷ can
be executed with the commands +,-,*,/. Use parentheses, (), to preserve order of operations,
but please note that adjacent parenthesis, ()(), and variables, 5x or ab, do not translate to
multiplication in Matlab. Unlike written mathematics, you must indicate multiplication with *,
meaning (5)(10) or ab in Matlab must be typed as 5*10 or a*b.

Exercise 1. Execute the following commands in your own command prompt (hitting enter after
each). Verify that you generate the correct output.

1. 23 − (3− 6)/2 + 7(.5) (Output: 13)

2. 32−2(3)+4
2+7 (Output: 0.777777777777778)

3. 3+4.5
72−2(9) −

2(1.5)−1
3−6.2 (Output: 0.866935483870968)

4.
(√

7−
√
6

4

)2
(Output: 0.002407412699017)

Tip: Matlab remembers your previous commands. To recall a previous command, hit the
up-arrow key while your cursor is in the command prompt.

Exercise 2. You can assign variable names to calculations. Repeat the commands in (1)-(4) in
the previous exercise assigning the variable names a,b,c, and d to each calculation in 1-4 above.
To do this, type a = before the calculation, then hit enter to execute. Once you have created
the variables, you will see them in your workspace (usually found on the left-hand side, under the
contents of your directory). Now, type, >>(a+b)/c+dˆ2 in your command line. The output should
be 15.892512255584224.

Tip: You can clear variables using the command clear. To do this, type clear a and hit
enter and watch a disappear from your workspace. Type clear all to clear all variables from
your workspace.

Matlab has a few reserved variables, given in Table 1. Avoid accidentally redefining any of
these variables. Take special note that the number e is not among the reserved variables.
Type >> help variableName into your command prompt to learn more about each reserved
variable.

2.2 Working with arrays

The power of Matlab lies in its ability to work efficiently with arrays (vectors, matrices) when
performing calculations. Thus, whenever possible, we try to define our problems using arrays.
Instructions for constructing arrays in Matlab are given in the table below.

2

variable meaning

ans result of the previous calculation

computer type of computer you are on

eps machine epsilon

i, j
√
−1

inf infinity; this is also the result of dividing 1 by 0

NaN ‘not a number,’ results from 0/0, ∞/∞, 0 · ∞
pi π

realmax, realmin largest and smallest real numbers represented

Table 1: Reserved Variables in Matlab

Arrray Math Matlab

row vector
[
a1, a2, a3, a4

]
[a1 a2 a3 a4] or [a1, a2, a3, a4]

column vector

a1
a2
a3
a4

 [a1; a2; a3; a4]

matrix

[
a11 a12
a21 a22

]
[a11 a12; a21 a22]

Table 2: Arrays in Matlab

Exercise 3. In Table 2 you see how different array variables are created. Use it to create the
following variables. Examine the variables in your workspace. Try double clicking each one.

rowVec = [1.01, 17, π, 1/2] (use pi for π), colVec =

3/4
15.8

3
−5

 , matrix =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Exercise 4. When performing arithmetic with arrays, you need to obey the dimension rules you
learned in linear algebra. Try the following operations with the variables you just created. Notice
how when you violate dimension rules you generate an error 1.

1. matrixˆ2 Answer or Error?

2. rowVec + colVec Answer or Error?

3. matrix * colVec Answer or Error?

4. rowVec * matrix Answer or Error?

5. rowVec * colVec Answer or Error?

6. matrix + rowVec Answer or Error?

1Note that in some cases, Matlab does not throw an error, but instead calculates something completely different.
Always make sure that Matlab is computing what you expect it to compute.

3

2.3 Functions in Matlab

Not surprisingly, elementary functions, such as ex and sin(x) are built-in to the Matlab library
(see Table 3 for examples).

function MATLAB function

ex or exp(x) exp(x) *** not eˆx ***

ln(x) log(x) *** not ln(x)***

cos(x), sin(x), tan(x) cos(x), sin(x), tan(x)

arctan(x) atan(x)√
x sqrt(x)

Table 3: Built-in Matlab functions

Exercise 5. Use Matlab to calculate the following (expressions).

1. Compare sin(π) to
√

1− cos2(π). Is the answer what you would expect? Why or why not?

2. Compute arctan(1/
√

3)− arctan(
√

3/3). Is the answer what you would expect? Why or why
not?

It is important to remember that in many cases, Matlab performs calculations numerically
unless otherwise told. This means that calculations are performed using finite arithmetic and
numerical algorithms (as needed). In many cases, calculations are accurate to with about 16 decimal
places (although there are exceptions). If you desire Matlab to perform a symbolic computation
you must use either symbolic variables or the command sym.

Exercise 6. Repeat the calculations from the previous exercise. This time preface each calculate
with the command sym. (type sym(calculation)). What changes?

Sometimes it may be convenient to define your own function. You can do so by creating an
anonymous function handle. For example, if you wanted to define the function f(x) = x2− lnx,
in Matlab you would type the command: >> f = @(x)xˆ2 + log(x).

Exercise 7. Define the anonymous function f(x) = x2 − lnx as described above. Then use it to
make the following calculations f(1), f(0), f(e), f(π). Record their values out to 4 decimal places.

Suppose we wanted to evaluate the function f(x) on a list of x-values, x = 1, 2, 3, . . . , 100. The
efficient way to find these values is to vectorize the function f by redefining it with componentwise-
arithmetic so that it can act componentwise on arrays. In other words, we want f to act on each
component of the input vector (or matrix):

f([x1, x2])) = [f(x1), f(x2)].

By default, addition (+), substraction (−) and scalar multiplcation/division act componentwise
on arrays. However, multiplication and division do not. To invoke componentwise arithmetic,
include a period, . , before any multiplication or division operator (e.g. .*, ./, .ˆ), then Matlab
will perform that calculation componentwise on arrays.

Exercise 8. Redefine f from the previous exercise using componentwise arithmetic. Define the
variable X=1:100; (this command produces the vector X = [1 2 3. . .100], and ; suppresses the
output). Now execute f(X).

4

Tip: Suppress any unnecessary output with ; at the end of the command line. This is essential
to remember since we will often do calculations large arrays. If you forget to suppress output
and want to clear your command prompt, type >> clc.

2.4 Plotting

The default command for plotting in Matlab is plot. This command acts on numerical input
(think: vectors). The basic syntax is plot(Xdata, Ydata), where Xdata is a vector containing
the x-values of the data you would like to plot, and Ydata the corresponding y-values (both vectors
must be of the same length). Matlab then plots Xdata and Ydata by pairwise plotting the points
(Xdata(i), Ydata(i)) and connecting subsequent points with a straight line.

Exercise 9. Using the same f as in the previous exercise, define Xdata = 1:100; and Ydata=f(X);.
Plot (Xdata, Ydata) using the plot command. Using >> help plot, figure out how to change
the color of your plot and marking data points with o’s.

You can make multiple plots using a single plot command. To do so, you continue listing
your x and y-data pairwise: plot(Xdata1, Ydata1, Xdata2, Ydata2, ...). Matlab will
automatically assign a different color to each plot.

Tip: When you execute the command plot, Matlab creates a separate figure window with
your plot. Sometimes this window may be hidden behind the main window of Matlab. Typing
the command close into your command line and hitting enter will close your most recently
created figure window. The command close all will close all figure windows.

Exercise 10. Create a plot of the graphs of sin(x) and cos(x) over the interval [0, 2π]. Use enough
x-data points to make your plot appear smooth to the eye.

3 Creating, using, and saving Matlab files

You can make and save pdfs of your commands/code and output by creating a live script. This
is how we will complete homework problems that require Matlab. To do this, follow the steps
below.

1. Click the ‘New Live Script’ button on the top left. This opens a new document in which you
can type both text and Matlab code.

2. Select the editor tab. Save your file by clicking on the button ‘Save’ and selecting ‘Save as’.
Notice you are automatically saving the file in the designated folder you created and selected
earlier. The extension will be ‘.mlx’ for a live script.

3.1 Titles, sections, and comments

You should use the Text option to create a title for your document by choosing ‘Heading’ under
text options. To write Matlab code, click the code button on the toolbar. You should notice
that the font is different when typing code and that line numbers will appear on the left-hand
side. You can use %%-sign to separate sections of code. A single % followed by text is a comment

5

(% comment text). Comments appear in green. You can usually use %% titles as breaks between
sections of code; however, in the live script editor, you must click the ’Section Break’ button to
separate chunks of code.

3.2 Exporting to PDF

To hand in your work, make sure to export your live script as a pdf. To do this, click on the arrow
below ‘Save’ to pull up a menu. Click on ‘Export to PDF’ and click save. **Make sure to always
save your mlx-file and export the final output to PDF.

Tip: For more help on live scripts, explore the following page: https://www.mathworks.

com/help/matlab/matlab_prog/create-live-scripts.html

1

2

6

https://www.mathworks.com/help/matlab/matlab_prog/create-live-scripts.html
https://www.mathworks.com/help/matlab/matlab_prog/create-live-scripts.html

	Introduction
	Starting up MATLAB
	Getting Help

	Command Practice
	Arithmetic, variables, and your workspace
	Working with arrays
	Functions in Matlab
	Plotting

	Creating, using, and saving Matlab files
	Titles, sections, and comments
	Exporting to PDF

