MATH 226: Differential Equations

Class 21: April 8, 2022

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Notes on Assignment 12 Assignment 13

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Announcements

Project 2 Due Friday, April 15 Exam 2 Monday, April 18

KO K K Ø K K E K K E K V K K K K K K K K K

Theorem: Let $\lambda_1, \lambda_2, ..., \lambda_m$ be m **distinct** eigenvalues of a square matrix A with corresponding eigenvectors $v_1, v_2, ..., v_m$, respectively; that is, $A\mathbf{v_i} = \lambda_i \mathbf{v_i}$ for $i = 1, 2, 3, ..., m$. Then the set $\{v_1, v_2, ..., v_m\}$ is linearly independent.

Consequently, the functions $e^{\lambda_1 t} \mathbf{v_1}, e^{\lambda_2 t} \mathbf{v_2}, ... e^{\lambda_m t} \mathbf{v_m}$ form a linearly independent set of solutions to the system $\mathbf{x}' = A\mathbf{x}$.

KORKAR KERKER SAGA

Proof of the Theorem via Mathematical Induction . We have proved the cases $m = 1$ and $m = 2$. Suppose the Theorem is true for some positive integer $m = k$. . Now consider $\lambda_1, \lambda_2, ..., \lambda_k, \lambda_{k+1}$ be $k+1$ distinct eigenvalues of a square matrix A with corresponding eigenvectors $v_1, v_2, ..., v_k, v_{k+1}$, respectively. Consider a linear combination of these $k + 1$ vectors equal to 0: . (*) $C_1v_1 + C_2v_2 + ... + C_kv_k + C_{k+1}v_{k+1} = 0$ Multiply (*) by A and then by λ_{k+1} to obtain . (**) $C_1\lambda_1v_1 + C_2\lambda_2v_2 + ... + C_k\lambda_kv_k + C_{k+1}\lambda_{k+1}v_{k+1} = 0$. (***) $C_1\lambda_{k+1}\mathbf{v}_1 + C_2\lambda_{k+1}\mathbf{v}_2 + ... + C_k\lambda_{k+1}\mathbf{v}_k + C_{k+1}\lambda_{k+1}\mathbf{v}_{k+1} = \mathbf{0}$. Subtract (***) from (**) . $C_1(\lambda_1 - \lambda_{k+1})\mathbf{v}_1 + C_2(\lambda_2 - \lambda_{k+1})\mathbf{v}_2 + ... + C_k(\lambda_k - \lambda_{k+1})\mathbf{v}_k = \mathbf{0}$. But $\{v_1, v_2, ..., v_k\}$ is a linearly independent set. . Hence each $\,\mathsf{C}_i(\lambda_i-\lambda_{k+1})$ is 0. These means each $\,\mathsf{C}_i$ is 0 for $i = 1, 2, ..., k$. . Substitute back into (*) to obtain $C_{k+1}\mathbf{v}_{k+1} = \mathbf{0}$, implying C_{k+1}

also $= 0$.

KORKAR KERKER E VOOR

$$
A = \begin{bmatrix} -40 & -6 & 19 & -28 & 50 \\ -69 & -13 & 35 & -44 & 88 \\ 114 & 26 & -53 & 56 & -138 \\ 1 & 2 & -1 & -1 & -2 \\ -87 & -16 & 41 & -52 & 107 \end{bmatrix}
$$

Characteristic Polynomial: $\lambda^5 - 20\lambda^3 + 30\lambda^2 + 19\lambda - 30$ $= (\lambda + 5)(\lambda - 1)(\lambda - 2)(\lambda - 3)(\lambda + 1)$ Eigenvalue Eigenvector (written horizontally) 3 $v_1 = (2,4,2,1,2)$ 1 $\mathbf{v}_2 = (1, 2, -1, 1, 2)$ $v_3 = (2,1,-2,1,3)$ 2 $v_4 = (1,3,2,1,1)$ $v_5 = 1, -1, 3, 1, 0$

$$
C_1e^{3t}\mathbf{v}_1+C_2e^t\mathbf{v}_2+C_3e^{-t}\mathbf{v}_3+C_4e^{2t}\mathbf{v}_4+C_5e^{-5t}\mathbf{v}_5
$$

 $2Q$

B

The Matrix A Is Nondefective With **Real Eigenvalues**

Let $(\lambda_1, v_1), \ldots, (\lambda_n, v_n)$ be eigenpairs for the real, $n \times n$ constant matrix A. Assume that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are real and that the corresponding eigenvectors v_1, \ldots, v_n are linearly independent. Then

$$
\{e^{\lambda_1 t} \mathbf{v}_1, \ldots, e^{\lambda_n t} \mathbf{v}_n\}
$$

is a fundamental set of solutions to $x' = Ax$ on the interval $(-\infty, \infty)$. The general solution of $x' = Ax$ is therefore given by

$$
\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + \cdots + c_n e^{\lambda_n t} \mathbf{v}_n,
$$

KORK EXTERNE PROVIDE

where c_1, \ldots, c_n are arbitrary constants.

$$
A = \begin{bmatrix} 8 & 1 & -3 & 4 & -7 \\ -21 & -2 & 9 & -10 & 25 \\ -6 & -1 & 5 & -4 & 7 \\ -5 & -1 & 2 & 0 & 6 \\ 1 & 0 & -1 & 2 & 1 \end{bmatrix}
$$

Characteristic Polynomial: $\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72$ $= (\lambda - 3)^2(\lambda - 2)^3$ $\lambda = 2$ has algebraic multiplicity 3 and geometric multiplicity 3 with a linearly independent set of 3 vectors $\{v_1, v_2, v_3\}$ $= \{ (1,1,0,0,1), (-2,8,0,1,0), 1,-3,1,0,0) \}$ $\lambda = 3$ has algebraic multiplicity 2 and geometric multiplicity 2 with a linearly independent set of 2 vectors $\{w_1, w_2\} = \{ (1,-1,-1,0,1), (-1,4,1,1,0) \}$

KORKA SERKER YOUR

The General Solution to $X' = AX$ is

$$
C_1e^{2t}{\bf v}_1 + C_2e^{2t}{\bf v}_2 + C_3e^{2t}{\bf v}_3 + C_4e^{3t}{\bf w}_1 + C_5e^{3t}{\bf w}_2
$$

KOKK@KKEKKEK E 1990

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

$$
A = \begin{bmatrix} 39 & 7 & -17 & 23 & -45 \\ -26 & -4 & 13 & -15 & 34 \\ -83 & -17 & 42 & -52 & 104 \\ 11 & 2 & -5 & 9 & -13 \\ 62 & 12 & -29 & 39 & -74 \end{bmatrix}
$$

Characteristic Polynomial:
\n
$$
\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72
$$
\n= (λ − 3)²(λ − 2)³

 $\lambda = 2$ has algebraic multiplicity 3 but geometric multiplicity 1 with only 1 linearly independent eigenvector (0,4,3,1,0) $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector (1,2,-1,1,2)

$$
A = \begin{bmatrix} 19 & 3 & -8 & 10 & -20 \\ 1 & 2 & -1 & 2 & -1 \\ -17 & -3 & 10 & -10 & 20 \\ 6 & 1 & -3 & 6 & -7 \\ 23 & 4 & -11 & 14 & -25 \end{bmatrix}
$$

Characteristic Polynomial:
\n
$$
\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72
$$
\n
$$
= (\lambda - 3)^2(\lambda - 2)^3
$$

 $\lambda = 2$ has algebraic multiplicity 3 and geometric multiplicity 3 with a linearly independent set of 3 vectors $\{v_1, v_2, v_3\}$ $= \{ (1,1,0,0,1), (-2,8,0,1,0), 1,-3,1,0,0) \}$ $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector (1,2,-1,1,2)

A is 5×5 matrix so solving $X' = AX$ involves finding 5 linearly independent solutions. We have 4. How do we find a 5th? $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector $\mathbf{v} = (1, 2, -1, 1, 2)$. Recall what we did in 2×2 case We formed a new solution of the form $t e^{\lambda t} \mathbf{v} + e^{\lambda t} \mathbf{w}$ where \mathbf{w} was chosen so that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ so that $A\mathbf{w} - \lambda \mathbf{w} = \mathbf{v}$ or $A\mathbf{w} = \lambda \mathbf{w} + \mathbf{v}$ We can do the same thing here: $(te^{\lambda t}{\bf v}+e^{\lambda t}{\bf w})'=t\lambda e^{\lambda t}{\bf v}+e^{\lambda t}{\bf v}+\lambda e^{\lambda t}{\bf w}$ $A(t e^{\lambda t} \mathsf{v} + e^{\lambda t} \mathsf{w}) = t e^{\lambda t} A \mathsf{v} + e^{\lambda t} A \mathsf{w}$ $= t e^{\lambda t} \lambda {\bf v} + e^{\lambda t} \lambda {\bf w} + e^{\lambda t} {\bf v}$

KORKAR KERKER SAGA

Some Conditions To Check: The vectors v and w form a Linearly Independent Set The Five Solutions Form a Linearly Independent Set of Functions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Return to Example 4

$$
A = \begin{bmatrix} 39 & 7 & -17 & 23 & -45 \\ -26 & -4 & 13 & -15 & 34 \\ -83 & -17 & 42 & -52 & 104 \\ 11 & 2 & -5 & 9 & -13 \\ 62 & 12 & -29 & 39 & -74 \end{bmatrix}
$$

Characteristic Polynomial:
\n
$$
\lambda^5 - 12\lambda^4 + 57\lambda^3 - 134\lambda^2 + 156\lambda - 72
$$
\n
$$
= (\lambda - 3)^2(\lambda - 2)^3
$$

 $\lambda = 2$ has algebraic multiplicity 3 but geometric multiplicity 1 with only 1 linearly independent eigenvector (0,4,3,1,0) $\lambda = 3$ has algebraic multiplicity 2 but geometric multiplicity 1 with only 1 linearly independent eigenvector (1,2,-1,1,2)

 $\lambda = 2$ has algebraic multiplicity 3 but geometric multiplicity 1 with only 1 linearly independent eigenvector (0,4,3,1,0) We are short 2 solutions Suppose **v** is an eigenvalue associated with λ and **w** satisfies $(A - \lambda I)\mathbf{w} = \mathbf{v}$ Then $e^{\lambda t}$ **v** and $te^{\lambda t}$ **v** + $e^{\lambda t}$ **w** are solutions. To find a third: Pick vector **u** such that $(A - \lambda I)\mathbf{u} = \mathbf{w}$ Then $\frac{t^2}{2}$ $\frac{t^2}{2}e^{\lambda t}\mathbf{v} + te^{\lambda t}\mathbf{w} + e^{\lambda t}\mathbf{u}$ is also a solution.

KORKAR KERKER SAGA

Suppose λ has algebraic multiplicity 4 but geometric multiplicity 1 with only 1 linearly independent eigenvector v Pick vectors w, u, s so that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ $(A - \lambda I)$ u = w $(A - \lambda I)$ s = u Then 4 solutions are $e^{\lambda t}$ v te $^{\lambda t}$ v + e $^{\lambda t}$ w t^2 $\frac{t^2}{2}e^{\lambda t}$ v + $te^{\lambda t}$ w + $e^{\lambda t}$ u $\frac{t^3}{3!}e^{\lambda t}$ v + $\frac{t^2}{2!}e^{\lambda t}$ w + $te^{\lambda t}$ u + $e^{\lambda t}$ s

KORKARYKERKER POLO

What's Next?

$$
x' = ax
$$
 has solution $x = Ce^{at}$
Could $\mathbf{X}' = AX$ have solution $\mathbf{X} = Ce^{At}$?

K ロ K K d K K B K K B K X B K Y Q Q Q