MATH 226: Differential Equations

March 4, 2022

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

 \mathbb{B}

 2990

KORK EXTERNE PROVIDE

Notes on Assignment 5 Revised Assignment 6

Announcements

First Team Project Due: Next Friday

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Announcements

First Team Project Due: Next Friday

Exam 1: Monday, March 14 Office Hour Today: 12:30 – 1:15

KORKARYKERKER POLO

More Announcements

Drop In Tutoring Sunday: 6 - 7 Monday and Wednesday: 7 - 8 (Room 230, Davis Family Library) Tutor: Steven Shi

Mathematics Department Lecture Tuesday at 12:30 (Pizza) Rose Morris-Wright

KORKARYKERKER POLO

Today's Topics

Method of Least Squares

Existence and Uniqueness Theorems for Nonlinear Differential Equations

Qualitative Analysis of Single Species Population Dynamics Autonomous Models

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Today's Topics

A. Method of Least Squares

B. Existence and Uniqueness Theorems for Linear Differential Equations

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Least Squares Principle

-
- squared deviations of data

Least Squares

イロメ 不優 メイ君 メイ君 メー 君一

 2990

Method of Least Squares

Facebook Users

Exponential Growth[?](#page-7-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

MATLAB Code

YEARS = [2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021]; USERS = [1056, 1230, 1365, 1515, 1682, 1867, 2072, 2320, 2498, 2797]; plot(YEARS, USERS)

xlabel('Year'), ylabel('Millions of Users')

KORKARYKERKER POLO

Method of Least Squares

Fitting Data To A Straight Line

Suppose $U(t) = Ce^{at}$

For some constants a and C.

 $log U(t) = log C + at$

Graph of $log U(t)$ should be a straight line. How Do We Find a and C?

KO K K Ø K K E K K E K V K K K K K K K K K

What Straight Line Best Approximates The Observed Data?

Data:
$$
(x_1, y_1), (x_2, y_2), ... (x_n, y_n)
$$

Line: $y = ax + b$

Idea: Minimize
$$
\sum_{i=1}^{n} (y_1 - (ax_i + b)))^2
$$

KE K K Ø K K E K K E K V R K K K K K K K K

The Method of Least Squares

The method of least squares finds the "best" straight line $y = ax + b$ through a set of data points $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$ by choosing a and b to minimize

$$
\sum_{i=1}^n (y_i - (ax_i + b))^2,
$$

the sum of the squares of the vertical distances between the data and the line. The solution is

$$
a = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \quad b = \overline{y} - a\overline{x} \quad \text{where} \quad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \text{and} \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.
$$

Example: Here are six observed data points.

 $\overline{16}$

Use the Method of Least Squares to find the line of best fit. See Maple worksheet for assistance

KORKARRA ERKER SAGA

Problem

The table below gives the census data of the United States from 1790 to 1860.

Assume that these data fit an exponential growth model $x(t) = x_0 e^{rt}$, or $\log x(t)$ $=\log x_0 + rt$. Use the method of least squares on these data to estimate r. Hint: Here $\log x(t)$ corresponds to y, and t corresponds to x.

Note: In *Maple*, you can create a new vector whose entries are the natural logarithms of the entries of another vector by the command

KORKARRA ERKER SAGA

for *i* from 1 to *n* do $\log x[i] := \log x[i]$ od

 $\label{eq:2} \begin{array}{l} with(\textit{plots}) : \\ \textit{P2} := \textit{pointplot}(\textit{seq}(\{x[i], y[i]\}, i\!=\!1..6)\}) \end{array}$

 \bar{t}

 $display(P1, P2)$

Line of Best Fit in MATLAB
 $x = [1, 2, 2, 3, 3, 0, 3, 8, 4, 7, 5, 9]$

```
v = [1, 1, 2, 1, 3, 1, 4, 0, 4, 9, 5, 9];n \equiv numel(x) % Number of data points
xsum = sum(x); % add up numbers in x
vsum = sum(v): % add up numbers in vxbar = xsum/n: % average x value
vbar = vsum/n: % average v value
A = x - xbar; % subtract average x value from all x values
B = y - ybar; % subtract average y value from all y values
Denominator \equiv dot(A,A)% sum of squared entries in A
Numerator = dot(A,B)% sum of the A[i]*B[i]
a = Numer/Denom % slope of line of best fit
b = ybar - a * xbar * intercept of line of best fit
BestFit = a * x + bplot(x,y,'r') % plot of original data
hold on
plot(x, BestFit, 'b') % plot of best fit line
hold off
```
Results: $n = 6$ Denominator = 14.2683 Numerator = 14.9917 $a = 1.0507$ b = -0.1433

KORK ERKER ADA ADA KORA

K ロ K K d K K B K K B K X B K Y Q Q Q

B.Existence and Uniqueness Theorems

If the functions p and g are continuous on an open interval $I: \alpha < t < \beta$ contain-Theorem 2.4.1 ing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies the differential equation $v' + p(t)v = g(t)$ for each t in I , and that also satisfies the initial condition $v(t_0) = v_0$. where v_0 is an arbitrary prescribed initial value.

Notes: Theorem 2.4.1 pertains to **LINEAR** systems

Find longest open interval I containing t_0 on which $p(t)$ and $g(t)$ are continuous.

You need not find the solution itself to find its interval of definition. Solutions with different initial conditions do not intersect over their intervals of definition.

B.Existence and Uniqueness Theorems

If the functions p and g are continuous on an open interval $I: \alpha < t < \beta$ contain-Theorem 2.4.1 ing the point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies the differential equation

$$
y' + p(t)y = g(t)
$$

for each t in I , and that also satisfies the initial condition

 $y(t_0) = y_0$

KORK ERKER ADAM ADA

where y_0 is an arbitrary prescribed initial value.

PROOF: Follow construction of the solution

$$
\phi(t) = \frac{1}{\mu(t)} \left[\int_{t_o}^t \mu(s) g(s) ds + \mu(t_o) y_o \right]
$$

where

$$
\mu(t) = e^{\int p(t)dt}
$$

Example

$$
y'+(\tan t)y=\sin t, y(\pi)=0
$$

Has Solution

 $y = -\cos t \ln |\cos t|$

 2990

∍

Theorem on Nonlinear Differential Equations

$$
y' = f(t, y) \text{ with } y(t_0) = y_0
$$

Suppose there is an open rectangle R in (t, y) -plane and (t_0, y_0) is in R.

IF both f and $\partial f/\partial y$ are continuous throughout R, THEN there is some open interval I centered around t_o and a unique solution $y = \phi(t)$ of the differential equation valid on I with $\phi(t_o) = y_o$

KORKAR KERKER SAGA

Let the functions f and $\partial f/\partial y$ be continuous in some rectangle $\alpha < t < \beta$, Theorem 2.4.2 $\gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the initial value problem

$$
y'=f(t,y), \qquad y(t_0)=y_0.
$$

KORK STRAIN A STRAIN A COMP

Theorem 2.4.2 Let the functions f and $\partial f/\partial y$ be continuous in some rectangle $\alpha < t < \beta$, $\gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the initial value problem

$$
y'=f(t,y), \qquad y(t_0)=y_0.
$$

Theorem 2.4.2 Let the functions f and $\partial f/\partial y$ be continuous in some rectangle $\alpha < t < \beta$, $\gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the initial value problem

$$
y = f(t, y),
$$
 $y(t_0) = y_0.$

Let the functions f and $\partial f/\partial y$ be continuous in some rectangle $\alpha < t < \beta$, Theorem 2.4.2 $\gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the initial value problem

 \mathcal{V}

 $f(x)$

$$
y = f(t, y), \qquad y(t_0) = y_0.
$$

Example

$$
y' = \frac{\ln|ty|}{1 - t^2 + y^2}
$$

$$
f(t,y) = \frac{\ln |ty|}{1 - t^2 + y^2}, \frac{\partial f}{\partial y} = \frac{(1 - t^2 + y^2)(1/y) - \ln |ty|2y}{(1 - t^2 + y^2)^2}
$$

Fails to be continuous when $t = 0$ or $y = 0$ or $1 - t^2 + y^2 = 0$.

KO K K Ø K K E K K E K V K K K K K K K K K

Example

イロト イ部 トイ君 トイ君 トー B $2Q$

Example

$$
y' = y^2 \text{ with } y(0) = 3
$$

$$
f(t, y) = y^2 \text{ and } \frac{\partial f}{\partial y} = 2y \text{ are continuous.}
$$

Separate Variables

$$
y^{-2}y' = 1
$$

$$
-y^{-1} = t + C
$$

Find C: $-3^{-1} = 0 + C$ so $C = -\frac{1}{3}$
$$
-\frac{1}{y} = t - \frac{1}{3}
$$

$$
\frac{1}{y} = -t - \frac{1}{3} = \frac{-3t + 1}{3}
$$

$$
y = \frac{3}{1 - 3t}
$$

Example

 299

C. Qualitative Analysis of Single Species Population Dynamics Autonomous Models

 $y' = f(y)$ Logistic Growth With Threshold

$$
y'=ry(1-\frac{y}{K})(\frac{y}{T}-1), 0 < T < K
$$

 K is Carrying Capacity and T is Threshold.

KORK EXTERNE PROVIDE

Next Time:

Systems of First Order Differential Equations

$$
\frac{dx}{dt} = ax(t) + by(t) + f(t)
$$

$$
\frac{dy}{dt} = cx(t) + dy(t) + g(t)
$$
Review Linear Algebra