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Notes on Assignment 19
Assignment 20
Maple: Chaos

Butterfly Attractor



The Fragility of Being a Center

Consider X’ = AX with A =

(
36 80
−50 −36

)
Characteristic Polynomial: λ2 + 2704 so eigenvalues are λ = ±52i

Suppose we replace 36 with 36 + ε where ε is a small number.

A =

(
36 + ε 80
−50 −36

)
Characteristic Polynomial: λ2 − ελ+ 2704− 36ε

so eigenvalues are

λ =
ε±
√
ε2 + 144ε− 10816

2

ε small positive means real part ε
2 > 0: Spiral Source

ε small negative means real part ε
2 < 0: Spiral Sink



Chaos and Strange
Attractors:

The Lorenz Equations



Edward Norton Lorenz
(May 23, 1917 - April 16, 2008)

American mathematician and meteorologist
Pioneer of chaos theory

Discovered the strange attractor concept
Coined the term Butterfly Effect.



At one point I decided to repeat some of the computations in order
to examine what was happening in greater detail. I stopped the
computer, typed in a line of numbers that it had printed out a
while earlier, and set it running again. I went down the hall for a
cup of coffee and returned after about an hour, during which time
the computer had simulated about two months of weather. The
numbers being printed were nothing like the old ones. I
immediately suspected a weak vacuum tube or some other
computer trouble, which was not uncommon, but before calling for
service I decided to see just where the mistake had occurred,
knowing that this could speed up the servicing process. Instead of
a sudden break, I found that the new values at first repeated the
old ones, but soon afterward differed by one and then several units
in the last decimal place. . . . The numbers I had typed in were
not the exact original numbers, but were the rounded off values
that had appeared in the original printout. The initial round-off
errors were the culprits; they were steadily amplifying until they
dominated the solution. In today’s terminology, there was chaos.



Lorenz Biography

http://mathshistory.st-andrews.ac.uk/Biographies/Lorenz_Edward.html




Can the Flap of a Butterfly’s Wings in Brazil
Cause a Tornado in Texas a Week Later?





Chaos and Strange Attractors:
The Lorenz Equations

dx/dt = σ(−x + y) = −σx + σy
dy/dt = rx − y − xz
dz/dt = −bz + xy

Interesting Values:
σ = 10, b = 8/3, r = 28



dx/dt = −σx + σy = F (x , y , z)
dy/dt = rx − y − xz = G (x , y , z)
dz/dt = −bz + xy = H(x , y , z)

x : intensity of fluid motion
y , z : Temperature variations in horizontal, vertical
σ, b: material and geometric properties of fluid layer

r is proportional to change in temperature between top and
bottom of fluid layer.

The Lorenz equations also arise in simplified models for lasers,
dynamos, thermosyphons, brushless DC motors, electric circuits,

and chemical reactions.



dx/dt = −σx + σy = F (x , y , z)
dy/dt = rx − y − xz = G (x , y , z)
dz/dt = −bz + xy = H(x , y , z)

Critical Points
dx/dt = 0: y = x

and dy/dt = 0:
rx − y − xz = implies rx − x − xz = 0 so x(r − 1− z) = 0

Thus x = 0 or z = r − 1
and dz/dt = 0 implies −bz + xy = 0 so −bz + x2 = 0 or z = x2

b

Note also that dx/dt > 0 when y > x

and dz/dt > 0 when z < x2

b





Conditions for a Critical Point
y = x , z = x2

b , x = 0 or z = r − 1

P1 = (x = 0, y = 0, z = 0)

P2 = (x =
√

b(r − 1), y =
√
b(r − 1), z = r − 1

P3 = (x = −
√
b(r − 1), y = −

√
b(r − 1), z = r − 1

Note: If r < 1, then no P2 or P3

For b = 8/3 and r = 28, P2 = (6
√

2, 6
√

2, 27)



dx/dt = −σx + σy = F (x , y , z)
dy/dt = rx − y − xz = G (x , y , z)
dz/dt = −bz + xy = H(x , y , z)

Jacobian Matrix

 Fx Fy Fz
Gx Gy Gz
Hx Hy Hz


= −σ σ 0

r −1 −x
y x −b





Jacobian

 −σ σ 0
r −1 −x
y x −b


At Origin (0,0,0):

A =

 −σ σ 0
r −1 −0
0 0 −b



A− λI =

 −σ − λ σ 0
r −1− λ 0
0 0 −b − λ





Expand along third row to find determinant

A− λI =

 −σ − λ σ 0
r −1− λ 0
0 0 −b − λ


det(A− λI ) = −(b + λ)(λ2 + (1 + σ)λ+ (σ − σλ)

Eigenvalues:
λ1 = −b

λ2 =
−(1+σ)+

√
(1+σ)2−4σ(1−r)
2 =

−(1+σ)+
√

(1−σ)2+4σr
2

λ3 =
−(1+σ)−

√
(1+σ)2−4σ(1−r)
2 =

−(1+σ)−
√

(1−σ)2+4σr
2

Note: if σ and r are positive, then all eigenvalues are real and
distinct

λ1 and λ3 are negative
λ2 could be positive or negative

For our example, with σ = 10 and b = 8/3, we have
λ1 = −8/3

λ2 = −11+
√
81+40r
2

λ3 = −11−
√
81+40r
2



λ2 =
−11+

√
81+40r

2
λ2 will be positive if and only if
81 + 40r > 121; that is, r > 1

Thus, origin is asymptotically stable
if r < 1

and unstable if r > 1



In general, examine sign of λ2

−(1 + σ) +
√
(1− σ)2 + 4σr

which is positive if√
(1− σ)2 + 4σr > (1 + σ)

Squaring: (1− σ)2 + 4σr > (1 + σ)2

1− 2σ + σ2 + 4σr > 1 + 2σ + σ2

4σr > 4σ
r > 1

So r = 1 is a critical value for the
origin.



Critical Points
P1 = (0, 0, 0) and if r > 1:

P2 = (
√
b(r − 1),

√
b(r − 1), r − 1)

P3 = (−
√
b(r − 1), −

√
b(r − 1), r − 1)

If r ≤ 1, then origin is only critical point.
Suppose r > 1 so we have other critical points

Recall

A =

 −σ σ 0
r − z −1 −x
y x −b


With x = y =

√
b(r − 1), z = r − 1, we have

A =

 −σ σ 0

1 −1 −
√
b(r − 1)√

b(r − 1)
√

b(r − 1) −b





At x = y =
√

b(r − 1), z = r − 1, we have

A =

 −σ σ 0

1 −1 −
√
b(r − 1)√

b(r − 1)
√

b(r − 1) −b


Let σ = 10 and b = 8/3

The characteristic polynomial is

p(λ) = 3λ3+41λ2+8(r+10)λ+160(r−1)
3

0 < r < 1 P1 = (0, 0, 0) is unique critical point;
asymptotically stable

1 < r < 1.3456 p(λ) has 3 negative roots
P2,P3 asymptotically stable; P1 unstable

1.3456 < r < 24.737 p(λ) has 1 negative root; P1 unstable
P2,P3 asymptotically stable (spiral in);

24.737 < r 1 negative root; P1,P2,P3 unstable;
Most orbits near P1,P2 spiral away



The characteristic polynomial is

p(λ) = 3λ3+41λ2+8(r+10)λ+160(r−1)
3

so the sum of the eigenvalues = -4/3.

When λ = −41/3 is an eigenvalue, real parts of the others are 0.

Roots: λ∗, a + bi and a− bi ; sum of roots is λ∗ + 2a.

For λ > −41/3, a < 0 and for λ < −41/3, a > 0

Find r when p(−41/3) = 0:

p(−41/3) = −3760+152r
3 so r = 470

19 = 24.737




