MATH 226: Differential Equations

Class 23: April 13, 2022

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Variation of Parameters 1 Variation of Parameters 2

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Today's Agenda

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright Review Matrix Exponential
- **Nonhomogenous Systems**
- \blacktriangleright More on Defective Matrices
- ▶ Quick Peek at Nonlinear Systems

Review The Matrix Exponential

$$
e^{At} = I + At + A^2 \frac{t^2}{2!} + A^3 \frac{t^3}{3!} + ... + A^k \frac{t^k}{k!} + ...
$$

 e^{At} is an $n \times n$ matrix Each column of e^{At} is a solution of $x' = Ax$ The columns form a linearly independent set

Some Other Nice Properties:

$$
e^{A \times 0} = I
$$

\n
$$
(e^{At})' = Ae^{At}
$$

\n
$$
e^{-At} = (e^{At})^{-1}
$$

\n
$$
e^{A(r+s)} = e^{Ar}e^{As}
$$

Review

 e^{At} has wonderful properties but it is hard to compute via the power series definition.

Alternate Way To Compute Matrix Exponential e^{At}

 $e^{At} = X(t)(X(0))^{-1}$

where $X(t)$ is any Fundamental Matrix for $x' = Ax$.

How To Find X? Use eigenvalue/eigenvector approach.

Nonhomogeneous Systems

Recall Solution of
$$
x' = ax + g(t)
$$

\n $x' - ax = g(t)$
\nMultiply by integrating factor e^{-at}
\n $(xe^{-at})' = e^{-at}g(t)$
\n $xe^{-at} = \int e^{-at}g(t) dt + C$
\n $x = e^{at} \int e^{-at}g(t) dt + Ce^{at}$
\n $x = e^{at} \int_0^t e^{-as}g(s) ds + Ce^{at}$
\nEvaluate at $t = 0$:
\n $x = e^{at} \int_0^t e^{-as}g(s) ds + x(0)e^{at}$

KO K K Ø K K E K K E K V K K K K K K K K K

Nonhomogeneous Systems

 $x' = ax + g(t)$ has solution $x = e^{at} \int_0^t e^{-as} g(s) ds + e^{at} x(0)$ $X' = AX + g(t)$ has solution

$$
\mathbf{X} = e^{At} \int_0^t e^{-As} \mathbf{g}(s) + e^{At} \mathbf{X}(0)
$$

$$
\mathbf{X} = \Phi(t) \int_0^t \Phi^{-1}(s) \mathbf{g}(s) + \Phi(t) \mathbf{X}(0)
$$

We can also write the solution as

$$
\mathbf{X}(t)\int_{t_0}^t \mathbf{X}^{-1}(s)\mathbf{g}(s)\,ds + \mathbf{X}(t)\mathbf{X}^{-1}(t_0)
$$

where **X** is any fundamental solution of $X' = AX$

More on Defective Matrices

Solving $x' = Ax$ when A is "defective" Suppose λ is an eigenvalue of A with algebraic multiplicity 3 but geometric multiplicity 1.

> Find **v** such that $(A - \lambda I)\mathbf{v} = \mathbf{0}$ Find **w** such that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ Find **u** such that $(A - \lambda I)\mathbf{u} = \mathbf{w}$

Then 3 linearly independent solutions of $x' = Ax$ are $e^{\lambda t}$ v

$$
te^{\lambda t}\mathbf{v}+e^{\lambda t}\mathbf{w}
$$

 t^2 $\frac{t^2}{2}e^{\lambda t}$ v + $te^{\lambda t}$ w + $e^{\lambda t}$ u What to do if λ is an eigenvalue of A with algebraic multiplicity bigger than 3 but geometric multiplicity 1?

WHY DOES THIS WORK?

KEY STEP:

$$
(A - \lambda I)\mathbf{v} = \mathbf{0} \text{ implies } A\mathbf{v} = \lambda \mathbf{v}
$$

$$
(A - \lambda I)\mathbf{w} = \mathbf{v} \text{ implies } A\mathbf{w} = \mathbf{v} + \lambda \mathbf{w}
$$

$$
(A - \lambda I)\mathbf{u} = \mathbf{w} \text{ implies } A\mathbf{u} = \mathbf{w} + \lambda \mathbf{u}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Find **v** such that $(A - \lambda I)\mathbf{v} = \mathbf{0}$ Find **w** such that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ Find **u** such that $(A - \lambda I)\mathbf{u} = \mathbf{w}$ Note: 3 systems of linear algebraic equations with the same coefficient matrix Example $\sqrt{ }$ \mathcal{L} 4 8 12 −82 204 295 64 −128 −184 \setminus $\overline{1}$ Characteristic Polynomial : $\lambda^3 - 24\lambda^2 + 192\lambda - 512 = (\lambda - 8)^3$ Eigenvalue $\lambda = 8$ has algebraic multiplicity 3, but geometric multiplicity only 1. Here $(A - \lambda I) =$ $\sqrt{ }$ \mathcal{L} −4 8 12 −82 196 295 64 −128 −192 \setminus $\overline{1}$ To solve $(A - \lambda I)\mathbf{x} = \mathbf{b}$ construct augmented matrix $\sqrt{ }$ \mathcal{L} −4 8 12 | a -82 196 295 | b 64 −128 −192 | c \setminus $\overline{1}$ and reduce to row echelon [fo](#page-8-0)r[m](#page-0-0)

To solve
$$
(A - \lambda I)\mathbf{x} = \mathbf{b}
$$
:
\nAugmented matrix is $\begin{pmatrix} -4 & 8 & 12 & |a| \\ -82 & 196 & 295 & |b| \\ 64 & -128 & -192 & |c \end{pmatrix}$
\n
$$
\begin{pmatrix} 1 & 0 & \frac{1}{16} & | \frac{49}{32}a + \frac{1}{16}b \\ 0 & 1 & \frac{49}{32} & |-\frac{41}{64}a + \frac{1}{32}b \\ 0 & 0 & |16a + c \end{pmatrix}
$$
so $\mathbf{x} = \begin{pmatrix} \frac{49}{32}a + \frac{1}{16}b - \frac{1}{16}x_3 \\ -\frac{41}{64}a + \frac{1}{32}b - \frac{49}{32}x_3 \\ 16a + c \end{pmatrix}$
\nFor $(A - \lambda I)\mathbf{v} = \mathbf{0}$, set $a = 0, b = 0, c = 0$:
\n
$$
\mathbf{v} = \begin{pmatrix} -(1/16)x_3 \\ -(49/32)x_3 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} -1/16 \\ -49/32 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -49 \\ 32 \end{pmatrix}
$$
if $x_3 = 1$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 重 │ Ю ۹ (^)

$$
\begin{pmatrix} 1 & 0 & \frac{1}{16} & | & \frac{49}{32}a + \frac{1}{16}b \\ 0 & 1 & \frac{49}{32} & | & -\frac{41}{64}a + \frac{1}{32}b \\ 0 & 0 & 0 & | & 16a + c \end{pmatrix} \text{ so } \mathbf{x} = \begin{pmatrix} \frac{49}{32}a + \frac{1}{16}b & -\frac{1}{16}x_3 \\ -\frac{41}{64}a + \frac{1}{32}b - \frac{49}{32}x_3 \\ 16a + c \end{pmatrix}
$$

For
$$
(A - \lambda I)\mathbf{w} = \mathbf{v}
$$
, set $a = -2$, $b = -49$, $c = 32$:

$$
\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} (-1/16)w_3 \\ 1/4 - (49/32)w_3 \\ w_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/4 \\ 0 \end{pmatrix}
$$
 if $w_3 = 0$.

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 重 │ Ю ۹ (^)

$$
\mathbf{x} = \begin{pmatrix} \frac{49}{32}a + \frac{1}{16}b - \frac{1}{16}x_3 \\ -\frac{41}{64}a + \frac{1}{32}b - \frac{49}{32}x_3 \\ 16a + c \end{pmatrix}
$$

For $(A - \lambda I)\mathbf{u} = \mathbf{w}$, set $a = 0$, $b = -1/4$, $c = 0$:

$$
\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} (-1/64) - (1/16)u_3 \\ (-1/128) - (49/32)u_3 \\ u_3 \end{pmatrix} = \begin{pmatrix} -1/64 \\ -1/128 \\ 0 \end{pmatrix} \text{ if } u_3 = 0.
$$

Thus $\mathbf{v} = \begin{pmatrix} -2 \\ -49 \\ 32 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 0 \\ 1/4 \\ 0 \end{pmatrix}$, $\mathbf{u} = \begin{pmatrix} -1/64 \\ -1/128 \\ 0 \end{pmatrix}$

Solving $x' = Ax$ when A is "defective" Suppose λ is an eigenvalue of A with algebraic multiplicity 4 but geometric multiplicity 1.

> Find **v** such that $(A - \lambda I)\mathbf{v} = \mathbf{0}$ Find **w** such that $(A - \lambda I)\mathbf{w} = \mathbf{v}$ Find **u** such that $(A - \lambda I)\mathbf{u} = \mathbf{w}$ Find z such that $(A - \lambda I)\mathbf{z} = \mathbf{u}$

Then 4 linearly independent solutions of $x' = Ax$ are $e^{\lambda t}$ v

> te $^{\lambda t}$ v + e $^{\lambda t}$ w t^2 $\frac{t^2}{2}e^{\lambda t}$ v + $te^{\lambda t}$ w + $e^{\lambda t}$ u $\frac{t^3}{3!}e^{\lambda t}$ v + $\frac{t^2}{2}$ $\frac{t^2}{2}e^{\lambda t}$ w + t $e^{\lambda t}$ u + $e^{\lambda t}$ z

> > **KORKARYKERKER POLO**

Next Major Goal: Study Nonlinear Systems of General First Order Differential Equations

$$
x' = F(x, y, t) \qquad x' = F(x, y, z, t) \n y' = G(x, y, t) \qquad y' = G(x, y, z, t) \n z' = H(x, y, z, t)
$$

General Case $x'_1 = f_1(x_1, x_2, ..., x_n, t)$ $x'_2 = f_2(x_1, x_2, ..., x_n, t)$

> . .

$$
x'_n = f_n(x_1, x_2, ..., x_n, t)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\begin{array}{c|c|c} n = 2 & n = 3 \\ \hline x' = F(x, y, t) & x' = F(x, y, z, t) \\ y' = G(x, y, t) & y' = G(x, y, z, t) \\ z' = H(x, y, z, t) \end{array}
$$

Autonomous Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Three Approaches:

Analytic: Rarely Possible To Find Closed Form Solution Numeric: Detailed Information About a Single Solution Geometric: Qualitative Information About All Solutions

KO K K Ø K K E K K E K V K K K K K K K K K

Example

$$
x' = (2 - y)(x - y) \n y' = (1 + x)(x + y)
$$

STEP ONE: Identify All Equilibrium Points $x' = 0$ along lines $y = 2$ and $y = x$ $y' = 0$ along lines $x = -1$ and $y = -x$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
x' = (2 - y)(x - y), y' = (1 + x)(x + y)
$$

 2990 K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

$$
\begin{array}{c|c|c} n = 2 & n = 3 \\ \hline x' = F(x, y, t) & x' = F(x, y, z, t) \\ y' = G(x, y, t) & y' = G(x, y, z, t) \\ z' = H(x, y, z, t) \end{array}
$$

Autonomous Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Special Properties of Autonomous Systems

- 1. Direction Field is Independent of Time
- 2. Only One Trajectory Passing Through Each Point (x_0, y_0)
- 3. A Trajectory Can Not Cross Itself
- 4. A Single Well-Chosen Phase Portrait Simultaneously Displays Important Information About All Solutions

KORK ERKER ADAM ADA

Analyzing a Nonlinear System

Our Example From Last Time:

$$
x' = F(x, y) = (2 - y)(x - y) = 2x - 2y - xy + y2
$$

$$
y' = G(x, y) = (1 + x)(x + y) = x + y + x2 + xy
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Step 1: Find Critical Points: $x' = 0$ and $y' = 0$ **Step 2**: Find Signs of x' and y'

 E XAMPLE $x' = (2-y)(x-y) = 2x - 2y - xy + y^2$ y' = $(1+x)(x+y) = x + y + x^2 + xy$ $x'=0$ at $y=2$ and $y=x$ GREEN $y'=0$ at $x=-1$ and $y=-x$ $4 = x$ \hat{L} \rightarrow $4 = 2$ CRITICAL POINTS
(0,0) VASTALIC (-2,2) \triangleleft $(-1, 2)$ SADDLE $(-1,-1)$ SADDLE \overline{F} -2 $(-2, +2)$ $\mathbf{2}$ 4 L. Asymproncally STABLE $(cant + cll)$ $y = -x$ $Y=-1$

KOKK@KKEKKEK E 1990

Current Goal: Approximating Nonlinear Autonomous System with Linear System Near An Equilibrium Point

 $x' = F(x, y)$ $y' = G(x, y)$

$$
F(x,y) \approx F(x^*,y^*) + F_x(x^*,y^*)(x-x^*) + F_y(x^*,y^*)(y-y^*)
$$

$$
G(x,y) \approx G(x^*,y^*) + G_x(x^*,y^*)(x-x^*) + G_y(x^*,y^*)(y-y^*)
$$

But at Equilibrium Points, $F(x^*, y^*) = 0$, $G(x^*, y^*) = 0$ so

$$
F(x,y) \approx F_x(x^*,y^*)(x-x^*) + F_y(x^*,y^*)(y-y^*)
$$

$$
G(x,y) \approx G_x(x^*,y^*)(x-x^*) + G_y(x^*,y^*)(y-y^*)
$$

Carl Gustav Jacob Jacobi December 10, 1804 – February 18, 1851

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
F(x, y) \approx F_x(x^*, y^*)(x - x^*) + F_y(x^*, y^*)(y - y^*)
$$

$$
G(x, y) \approx G_x(x^*, y^*)(x - x^*) + G_y(x^*, y^*)(y - y^*)
$$

which we can write as

$$
\begin{bmatrix} F_x(x^*, y^*) & F_y(x^*, y^*) \\ G_x(x^*, y^*) & G_y(x^*, y^*) \end{bmatrix} \begin{bmatrix} x - x^* \\ y - y^* \end{bmatrix}
$$

or

$$
J(x^*,y^*)\begin{bmatrix}x-x^*\\y-y^*\end{bmatrix}=J(x^*,y^*)\begin{bmatrix}h\\k\end{bmatrix}
$$

J is called the Jacobi Matrix or Jacobian

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^