# MATH 226: Differential Equations



## Class 20: April 6, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



## Project Two Teams Political Movement Model in MATLAB A 3 x 3 Example in *Maple* (Handouts Folder)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Announcements

Office Hours Today: 12:30 to 2:30 PM Zoom Class on Friday No Office Hours on Friday Project Two Due Friday, April 15 Exam 2 on Monday, April 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Theorem from Last Time:

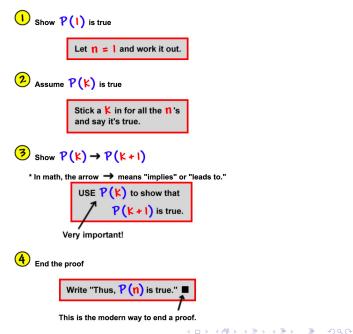
Suppose  $\lambda, \mu, \rho$  are distinct eigenvalues of the  $n \times n$  matrix A with corresponding eigenvectors  $\mathbf{v}, \mathbf{w}, \mathbf{u}$ , respectively; that is

 $A\mathbf{v} = \lambda \mathbf{v}$   $A\mathbf{w} = \mu \mathbf{w}$   $A\mathbf{u} = \rho \mathbf{u}.$ Then the set  $\{\mathbf{v}, \mathbf{w}, \mathbf{u}\}$  is linearly independent.

#### A Major Generalization:

Let  $\lambda_1, \lambda_2, ..., \lambda_m$  be *m* distinct eigenvalues of a square matrix *A* with corresponding eigenvectors  $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ , respectively; that is,  $A\mathbf{v_i} = \lambda_i \mathbf{v_i}$  for i = 1, 2, 3, ..., m. Then the set  $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}\}$  is linearly independent.

The four steps of math induction:



**Theorem:** Let  $\lambda_1, \lambda_2, ..., \lambda_m$  be *m* distinct eigenvalues of a square matrix *A* with corresponding eigenvectors  $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}$ , respectively; that is,  $A\mathbf{v_i} = \lambda_i \mathbf{v_i}$  for i = 1, 2, 3, ..., m. Then the set  $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}\}$  is linearly independent.

Consequently, the functions  $e^{\lambda_1 t} \mathbf{v}_1, e^{\lambda_2 t} \mathbf{v}_2, \dots e^{\lambda_m t} \mathbf{v}_m$  form a linearly independent set of solutions to the system  $\mathbf{x}' = A\mathbf{x}$ .

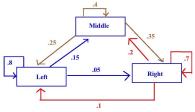
Here is a different generalization:

Suppose  $\lambda$  and  $\mu$  are distinct eigenvalues of a square matrix A. The eigenvalue  $\lambda$  has associated with it a set of 3 linearly independent eigenvectors  $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$  while the eigenvalue  $\mu$  has an associated set of 2 eigenvectors  $\mathbf{w_1}, \mathbf{w_2}$ . Then the set  $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{w_1}, \mathbf{w_2}\}$  is linearly independent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<u>Theorem</u>: Suppose  $\lambda$  and  $\mu$  are distinct eigenvalues of a square matrix A. The eigenvalue  $\lambda$  has associated with it a set of 3 linearly independent eigenvectors  $v_1, v_2, v_3$  while the eigenvalue  $\mu$ has an associated set of 2 eigenvectors  $w_1, w_2$ . Then the set  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}_1, \mathbf{w}_2\}$  is linearly independent. Proof: Suppose  $C_1, C_2, C_3, C_4, C_5$  are constants such that  $(*)C_1\mathbf{v_1} + C_2\mathbf{v_2} + C_3\mathbf{v_3} + C_4\mathbf{w_1} + C_5\mathbf{w_2} = 0$ Multiply (\*) by A to obtain  $C_1Av_1 + C_2Av_2 + C_3Av_3 + C_4Aw_1 + AC_5w_2 = A0$  or  $(**)C_1\lambda\mathbf{v_1} + C_2\lambda\mathbf{v_2} + C_3\lambda\mathbf{v_3} + C_4\mu\mathbf{w_1} + C_5\mu\mathbf{w_2} = 0$ Also multiply (\*) by  $\lambda$  to obtain: (\*\*\*)  $C_1\lambda \mathbf{v_1} + C_2\lambda \mathbf{v_2} + C_3\lambda \mathbf{v_3} + C_4\lambda \mathbf{w_1} + C_5\lambda \mathbf{w_2} = 0$ Subtract equation (\*\*\*) from equation (\*\*):  $C_4(\mu - \lambda)\mathbf{w}_1 + C_5(\mu - \lambda)\mathbf{w}_2 = 0$ But  $\{w_1, w_2\}$  is a linearly independent set so  $C_4 = 0, C_5 = \text{since}$  $\lambda \neq \mu$ . Substituting back into (\*), we have  $(*)C_1v_1 + C_2v_2 + C_3v_3 + = 0$ Linear Independence of { $v_1$ ,  $v_2$ ,  $v_3$ } now implies  $C_1 = C_2 = C_30$  as well.

### Political Movement Model



$$L' = -.2L + .25M + .1R = -\frac{1}{5}L + \frac{1}{4}M + \frac{1}{10}R$$
$$M' = .15L - .6M + .2R = \frac{3}{20}L - \frac{3}{5}M + \frac{1}{5}R$$
$$R' = .05L + .35M - .3R = \frac{1}{20}L + \frac{7}{20}M - \frac{3}{10}R$$

$$L' = -\frac{1}{5}L + \frac{1}{4}M + \frac{1}{10}R$$
$$M' = \frac{3}{20}L - \frac{3}{5}M + \frac{1}{5}R$$
$$R' = \frac{1}{20}L + \frac{7}{20}M - \frac{3}{10}R$$

$$\begin{pmatrix} L \\ M \\ R \end{pmatrix}' = \begin{pmatrix} -\frac{1}{5} & \frac{1}{4} & \frac{1}{10} \\ \frac{3}{20} & -\frac{3}{5} & \frac{1}{5} \\ \frac{1}{20} & \frac{7}{20} & -\frac{3}{10} \end{pmatrix} \begin{pmatrix} L \\ M \\ R \end{pmatrix}$$
$$\begin{pmatrix} L \\ M \\ R \end{pmatrix}' = A \begin{pmatrix} L \\ M \\ R \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Characteristic Polynomial det 
$$(A - \lambda I) = \lambda^3 + \frac{11}{10}\lambda^2 + \frac{99}{400}\lambda$$
  
 $= \lambda \left(\lambda^2 + \frac{11}{10}\lambda + \frac{99}{400}\right)$   
Eigenvalues:  
 $\lambda = 0$   
 $\lambda = \frac{-\frac{11}{20} \pm \sqrt{\frac{121}{100} - \frac{99}{100}}}{2} = \frac{-11 \pm \sqrt{22}}{20} = \begin{cases} \frac{-11 \pm \sqrt{22}}{20} \approx -.315\\ \frac{-11 - \sqrt{22}}{20} \approx -.784 \end{cases}$   
 $\frac{\text{Eigenvalue}}{\lambda = 0}$   $\mathbf{v}$   
 $\lambda = -.315$   $\mathbf{w}$   
 $\lambda = -.784$   $\mathbf{u}$   
General Solution:  $C_1 e^{0t} \mathbf{v} + C_2 e^{-.315t} \mathbf{w} + C_2 e^{-.784t} \mathbf{u}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

General Solution:  $\mathbf{X}(t) = C_1 e^{0t} \mathbf{v} + C_2 e^{-.315t} \mathbf{w} + C_2 e^{-.784t} \mathbf{u}$ 

$$\mathbf{X}(t)=C_1\mathbf{v}+C_2e^{-.315t}\mathbf{w}+C_2e^{-.784t}\mathbf{w}$$

As 
$$t \to \infty$$
,  $\mathbf{X}(t) \to C_1 \mathbf{v}$   
Important to find  $\mathbf{v}$   
 $\mathbf{v}$  is scalar multiple of  $\begin{pmatrix} 4\\2\\3 \end{pmatrix}$   
Entries in  $\mathbf{X}(t)$  must add to 1:  
 $4c + 2c + 3c = 1$  implies  $9c = 1$ ;  $c = 1/9$   
Thus  $\mathbf{X}(t) \to \begin{pmatrix} 4/9\\2/9\\3/9 \end{pmatrix}$ 

Another 3 by 3 Example  

$$\mathbf{X}' = A\mathbf{X}$$
 where  $A = \begin{pmatrix} 4 & 4 & -11 \\ -16 & -1 & 14 \\ 9 & -6 & -6 \end{pmatrix}$ 

Characteristic Polynomial is det
$$(A - \lambda I)$$
  

$$= \lambda^3 + 3\lambda^2 + 225\lambda + 675$$

$$= \lambda^3 + 225\lambda + 3\lambda^2 + 675$$

$$= \lambda(\lambda^2 + 225) + 3(\lambda^2 + 225)$$

$$= (\lambda + 3)(\lambda^2 + 225)$$

So eigenvalues are  $\lambda = -3, \lambda = \pm 15i$ 

EIGENVECTORS: 
$$(A - \lambda I)\mathbf{v} = \mathbf{0} = (A - \lambda I)\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \mathbf{0}$$
  
 $A = \begin{pmatrix} 4 & 4 & -11 \\ -16 & -1 & 14 \\ 9 & -6 & -6 \end{pmatrix}$   
For  $\lambda = -3, A - \lambda I = A + 3I = \begin{pmatrix} 7 & 4 & -11 \\ -16 & 2 & 14 \\ 9 & -6 & -3 \end{pmatrix}$   
which row reduces to  
 $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -0 & 0 \end{pmatrix}$  so  $v_2 = v_3$  Take  $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$   
Hence one solution to our system of differential equations is  
 $e^{-3t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 

EIGENVECTOR FOR 
$$\lambda = 15i$$
  
(4 - 15i 4 - 11 - 15i)

Here 
$$A - \lambda I = A - 15i = \begin{pmatrix} 4 - 15i & 4 & -11 - 15i \\ -16 & -1 & 14 \\ 9 & -6 - & -615i \end{pmatrix}$$
  
which row reduces to  
 $\begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & 1 + i \\ 0 & 0 & 0 \end{pmatrix}$  so  $w_2 = -(1 + i)w_3$  Take  $\mathbf{w} = \begin{pmatrix} i \\ -1 - i \\ 1 \end{pmatrix}$   
We can write  $\mathbf{w}$  as  $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + i \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \mathbf{p} + i\mathbf{r}$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Solutions Associated with 
$$\lambda = 15i$$
  
Eigenvector:  $\mathbf{w} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + i \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \mathbf{p} + i\mathbf{r}$   
Solution:  $e^{15it}(\mathbf{p} + i\mathbf{r}) = (\cos 15t + i\sin 15t)(\mathbf{p} + i\mathbf{r})$   
 $= (\cos 15t)\mathbf{p} + i(\cos 15t)i\mathbf{r} + i(\sin 15t)\mathbf{p} + i^2(\sin 15t)\mathbf{r}$   
 $= [(\cos 15t)\mathbf{p} - (\sin 15t)\mathbf{r}] + i [\cos 15t)\mathbf{r} + (\sin 15t)\mathbf{p}]$   
Each term in square brackets is itself as solution.  
The first is  $(\cos 15t) \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} - (\sin 15t) \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$   
which equals  $\begin{pmatrix} -\sin 15t \\ \sin 15t - \cos 15t \\ \cos 15t \end{pmatrix}$   
Similarly, the second is  $\begin{pmatrix} \cos 15t \\ -\sin 15t - \cos 15t \\ \sin 15t \end{pmatrix}$ 

The General Solution to 
$$\mathbf{X}' = A\mathbf{X}$$
 where  $A = \begin{pmatrix} 4 & 4 & -11 \\ -16 & -1 & 14 \\ 9 & -6 & -6 \end{pmatrix}$ :

$$C_{1}e^{-3t}\begin{pmatrix}1\\1\\1\end{pmatrix}+C_{2}\begin{pmatrix}-\sin 15t\\\sin 15t-\cos 15t\\\cos 15t\end{pmatrix}+C_{3}\begin{pmatrix}\cos 15t\\-\sin 15t-\cos 15t\\\sin 15t\end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶