MATH 226: Differential Equations

February 16, 2022

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Assignment 1 (Integration Review)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Announcements

- 1. Office Hour Today: 12:30 1:30
- 2. Explore Course Website
- 3. Practice Problems vs. Feedback Problems

Key Terms From Chapter 1

Independent Variable Dependent Variable Parameter Solution Equilibrium Solution Integral Curves Autonomous Differential Equation Critical Point = Fixed Point = Stationary Point Phase Line One - Dimensional Phase Portrait Asymptotically Stable Unstable Semistable Attractor = Sink Repeller = SourceLinearization About An Equilibrium Direction Field

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

VERIFYING A PROPOSED SOLUTION

Example: Verify that $y = Ce^{-4t} + \frac{1}{4}t + \frac{1}{2}e^{-2t} - \frac{1}{16}$ is a solution of

$$y'+4y=t+e^{-2t}$$

Verification

$$y' = -4Ce^{-4t} + \frac{1}{4} - e^{-2t} - 0$$
$$4y = 4Ce^{-4t} + t + 2e^{-2t} - \frac{1}{4}$$

Adding:

$$y'+4y=t+e^{-2t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analyzing Differential Equations

Example

$$P'(t) = 3P(t)$$
 with $P(0) = 100$

Initial Value Problem

Applications: Colony of Bacteria Money Compounded Continuously Human Population with Constant Per Capita Growth Rate

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

P'(t) = 3P(t) with P(0) = 100Qualitative Analysis P' is positive so P is increasing.

$$P'' = (P')' = (3P)' = 3P' = 3 \times 3P = 9P$$

So P'' > 0 and hence graph of P is increasing and concave up.

Do Such Curves Exist in the Real World?

Coronavirus Data

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

P'(t) = 3P(t) with P(0) = 100**Analytic Solution** $\frac{1}{P(t)}P'(t) = 3$ Integrate each side with respect to t|In|P(t)| = 3t + CBut P(t) > 0 so $\ln P(t) = 3t + C$ Apply exponential function to each side: $e^{lnP(t)} = e^{3t+C} = e^{3t}e^{C} = Ce^{3t}$ Hence $P(t) = Ce^{3t}$ Evaluate at 0: $100 = P(0) = Ce^{3 \times 0} = Ce^{0} = C$ so $P(t) = 100e^{3t}$ P is unbounded

$$\lim_{t\to\infty}P(t)=+\infty$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

How about P' = -3P, P(0) = 100? Application: Radioactive Decay P' is initially negative, so P is decreasing P'' = (P')' = (-3P)' = -3P' = -3(-3)P = 9P > 0Hence P is decreasing and graph is concave up Analytic Solution (Go Through Similar Steps) $P(t) = 100e^{-3t}$ Observe: P(t) > 0 for all t

$$\lim_{t\to\infty}P(t)=0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

MORE GENERALLY: P'(t) = kP(t) with $P(0) = P_0$ **Analytic Solution** $\frac{1}{P(t)}P'(t) = k$ Integrate each side with respect to t |In|P(t)| = kt + CBut P(t) > 0 so $\ln P(t) = kt + C$ Apply exponential function to each side: $e^{lnP(t)} = e^{kt+C} = e^{kt}e^{C} = Ce^{kt}$ Hence $P(t) = Ce^{kt}$ Evaluate at 0. $100 = P(0) = Ce^{k \times 0} = Ce^{0} = C$ so $P(t) = 100e^{kt}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

t

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Euler's Method For "Solving" Numerically $P'(t) = kP(t)$		
$P_{\textit{new}} = P_{\textit{old}} + k * P_{\textit{old}} * \Delta t$		
Example: $k = .04, P(0) = 1000$		
Time	Approximate	Exact
0.	1000.00	1000.00
0.100000000	1004.00000	1004.008011
0.200000000	1008.016000	1008.032086
0.300000000	1012.048064	1012.072289
0.400000000	1016.096256	1016.128685
0.500000000	1020.160641	1020.201340
0.600000000	1024.241284	1024.290318
0.700000000	1028.338249	1028.395684
0.800000000	1032.451602	1032.517505
0.900000000	1036.581408	1036.655846
1.000000000	1040.727734	1040.810774

The Differential Equation

P'(t) = kP(t)

Has Solution (if k is a constant)

 $P(t)=P(0)e^{kt}$

We can write P'(t) = kP(t) as P' = kPWe change the name of the dependent variable: $y' = ky \Rightarrow y = y(0)e^{kt}$ $x' = kx \Rightarrow x = x(0)e^{kt}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

More Complicated Relationships

- 1. Population with immigration and/or emigration
- 2. Forest Management
- 3. Fishery Management
- 4. Lake Champlain Pollution
- 5. Anesthetic
- 6. Alcohol/Drug
- 7. Credit Card Debt

P' = aP + bwhere *a* and *b* are constants

$$P' = aP + b$$
 or $y' = ay + b$

where a and b are constants

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆