
MATH 226: Differential Equations

Class 19: April 4, 2022



Notes on Assignment 11
Assignment 12

Team Members for Project 2
Political Movement Model in Maple (in Handouts

Folder)
Political Movement Model in MATLAB



Announcements

I Friday’s Class on Zoom

I Second Project Due Friday, April 15

I Exam 2 on Monday, April 18



Mathematician of the Week: Mary Lee Wheat Gray

April 4, 1939 –

Mary Gray is an American mathematician, statistician, and lawyer.
She has written on mathematics, education, computer science,

statistics and academic freedom.



Systems of First Order Linear Differential Equations

Why Not Study Second Order Equations?

Damped Harmonic Oscillator Swinging Pendulum
mw ′′(t) + bw ′ + kw = 0 θ′′(t) + g

L sin θ(t) = 0
Let x = w and y = w ′.

Then x ′ = w ′ = y and y ′ = w ′′

so mw ′′(t) + bw ′ + kw = 0 becomes my ′ + by + kx = 0
Thus we have the system

x ′ = y

y ′ = − k

m
x − b

m
y

Let x = θ and y = θ′. Then θ′′(t) + g
L sin θ(t) = 0 becomes

system x ′ = y , y ′ + g
l sin x = 0.
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Systems of First Order Linear Differential Equations

x ′ = (sin t)x +

(
1

t

)
y + 9z + 2t3

y ′ = (t2)x − (cos 3t)y + (e−3t)z + sec t

z ′ = (log t)x − 2020y + (tan t)z + e4t
2

x ′

y ′

z ′

 =

sin t 1
t 9

t2 − cos 3t e−3t

log t −2020 tan t

x
y
z

 +

 2t3

sec t

e4t
2


X’ = P(t) X + g(t)

Homogeneous: X’ = P(t) X
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Jozef Maria Hoene Wronski
Józef Maria Hoene-Wroński

1776 –1853











Homogenous Linear Systems
With Constant Coefficients

X’ = P(t) X where P(t) is a matrix of CONSTANTS

X’ = A X where A is an n × n matrix of CONSTANTS

x ′ = 5x + 29y − 4z − 1w

y ′ = 12x + 21y − 19z + 66w

z ′ = −8x + 15y + 7z − 2w

w ′ = 4x + 9y + 20z + 20w
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A Differential Equations Model of Political Movement

L′ = −.2L + .25M + .1R

M ′ = .15L− .6M + .2R

R ′ = .05L + .35M − .3R
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Consider a system of first order linear homogeneous differential
equations with constant coefficients

X’ = A X
where A is n × n matrix of constants and X is n × 1 vector of

functions of t.

Theorem 1 If λ is an eigenvalue of A with corresponding
eigenvector v, then eλtv is a solution of X’ = AX.

Proof: If X = eλt~v , then
X ’ = λeλt~v

= eλtλ~v
= eλt A ~v
= A eλt~v

= A X
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Theorem 2 If λ and µ are distinct eigenvalues of A with
corresponding eigenvectors ~v and ~w
(that is, A ~v = λ ~v and A~w = µ~w)

then

1. {~v , ~w} is a linearly independent set of vectors

2. {eλt~v , eµt ~w} is a linearly independent set
of solutions of X’ = AX

Proof of 1: Suppose C1 and C2 are constants such that
(*) C1 ~v + C2 ~w = ~0.
Multiply (*) by A to obtain (**) C1 λ ~v + C2 µ ~w = ~0
Multiply (*) by µ to obtain (***) C1 µ ~v + C2 µ ~w = ~0
Subtract (***) from (**)to obtain C1(λ - µ) ~v = ~0
But λ - µ 6= 0 and ~v 6= 0; Hence C1 = 0
which implies C2 ~w =~0 and that implies C2 = 0.
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A Generalization of Theorem 2

Theorem 3 If λ , µ and α are distinct eigenvalues of A with
corresponding eigenvectors ~v , ~w and ~u

(that is, A ~v = λ ~v , A~w = µ~w , A~u = α~u )
then

1. {~v , ~w , ~u} is a linearly independent set of vectors

2. {eλt~v , eµt ~w , eαt~u} is a linearly independent set
of solutions of X’ = AX



A Even Bigger Generalization of Theorem 2

Theorem 4 If λ1, λ2, ..., λk , are distinct eigenvalues of A with
corresponding eigenvectors ~v1, ~v2, ..., ~vk

(that is, A ~vi = λi for each i = 1, 2, 3, ..., k
then

1. {~v1, ~v2, ..., ~vk} is a linearly independent set of vectors

2. {eλ1t ~v1, e
λ2t ~v2, ..., e

λk t ~vk} is a linearly independent set of
solutions of X’ = AX


