MATH 226: Differential Equations

Class 19: April 4, 2022

Notes on Assignment 11

Assignment 12

Team Members for Project 2

Political Movement Model in Maple (in Handouts Folder)

Political Movement Model in MATLAB

Announcements

- ► Friday's Class on Zoom
- ► Second Project Due Friday, April 15
- Exam 2 on Monday, April 18

Mathematician of the Week: Mary Lee Wheat Gray

April 4, 1939 -

Mary Gray is an American mathematician, statistician, and lawyer. She has written on mathematics, education, computer science, statistics and academic freedom.

Why Not Study Second Order Equations?

Why Not Study Second Order Equations?

Damped Harmonic Oscillator Swinging Pendulum

amped Harmonic Oscillator Swinging Pendulum
$$mw''(t) + bw' + kw = 0$$
 $\theta''(t) + \frac{g}{L}\sin\theta(t) = 0$

Why Not Study Second Order Equations? Damped Harmonic Oscillator Swinging Pendulum mw''(t) + bw' + kw = 0 $\theta''(t) + \frac{g}{L}\sin\theta(t) = 0$ Let x = w and y = w'.

Why Not Study Second Order Equations? Damped Harmonic Oscillator Swinging Pendulum mw''(t) + bw' + kw = 0 $\theta''(t) + \frac{g}{L}\sin\theta(t) = 0$ Let x = w and y = w'. Then x' = w' = y and y' = w''

Why Not Study Second Order Equations? Damped Harmonic Oscillator Swinging Pendulum mw''(t) + bw' + kw = 0 $\theta''(t) + \frac{g}{L}\sin\theta(t) = 0$ Let x = w and y = w'. Then x' = w' = y and y' = w'' so mw''(t) + bw' + kw = 0 becomes my' + by + kx = 0

Why Not Study Second Order Equations?

Damped Harmonic Oscillator Swinging Pendulum
$$mw''(t) + bw' + kw = 0 \qquad \theta''(t) + \frac{g}{L}\sin\theta(t) = 0$$
 Let $x = w$ and $y = w'$. Then $x' = w' = y$ and $y' = w''$ so $mw''(t) + bw' + kw = 0$ becomes $my' + by + kx = 0$ Thus we have the system

$$x' = y$$
$$y' = -\frac{k}{m}x - \frac{b}{m}y$$

Why Not Study Second Order Equations?

Damped Harmonic Oscillator Swinging Pendulum
$$mw''(t) + bw' + kw = 0 \qquad \theta''(t) + \frac{g}{L}\sin\theta(t) = 0$$
 Let $x = w$ and $y = w'$. Then $x' = w' = y$ and $y' = w''$ so $mw''(t) + bw' + kw = 0$ becomes $my' + by + kx = 0$ Thus we have the system

$$x' = y$$
$$y' = -\frac{k}{m}x - \frac{b}{m}y$$

Let $x = \theta$ and $y = \theta'$. Then $\theta''(t) + \frac{g}{L}\sin\theta(t) = 0$ becomes system $x' = y, y' + \frac{g}{L}\sin x = 0$.

$$x' = (\sin t)x + \left(\frac{1}{t}\right)y + 9z + 2t^{3}$$

$$y' = (t^{2})x - (\cos 3t)y + (e^{-3t})z + \sec t$$

$$z' = (\log t)x - 2020y + (\tan t)z + e^{4t^{2}}$$

$$x' = (\sin t)x + \left(\frac{1}{t}\right)y + 9z + 2t^{3}$$

$$y' = (t^{2})x - (\cos 3t)y + (e^{-3t})z + \sec t$$

$$z' = (\log t)x - 2020y + (\tan t)z + e^{4t^{2}}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \sin t & \frac{1}{t} & 9 \\ t^{2} & -\cos 3t & e^{-3t} \\ \log t & -2020 & \tan t \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2t^{3} \\ \sec t \\ e^{4t^{2}} \end{pmatrix}$$

$$x' = (\sin t)x + \left(\frac{1}{t}\right)y + 9z + 2t^{3}$$

$$y' = (t^{2})x - (\cos 3t)y + (e^{-3t})z + \sec t$$

$$z' = (\log t)x - 2020y + (\tan t)z + e^{4t^{2}}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \sin t & \frac{1}{t} & 9 \\ t^{2} & -\cos 3t & e^{-3t} \\ \log t & -2020 & \tan t \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2t^{3} \\ \sec t \\ e^{4t^{2}} \end{pmatrix}$$

$$\mathbf{X'} = P(t) \mathbf{X} + \mathbf{g}(t)$$

$$x' = (\sin t)x + \left(\frac{1}{t}\right)y + 9z + 2t^{3}$$

$$y' = (t^{2})x - (\cos 3t)y + (e^{-3t})z + \sec t$$

$$z' = (\log t)x - 2020y + (\tan t)z + e^{4t^{2}}$$

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \sin t & \frac{1}{t} & 9 \\ t^{2} & -\cos 3t & e^{-3t} \\ \log t & -2020 & \tan t \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2t^{3} \\ \sec t \\ e^{4t^{2}} \end{pmatrix}$$

$$\mathbf{X'} = P(t) \mathbf{X} + \mathbf{g}(t)$$

Homogeneous: X' = P(t) X

Major Theorems On Systems of First Order Linear Differential Equations

Basic Existence and Uniqueness Result

THEOREM 6.2.1 (Existence and Uniqueness for First Order Linear Systems). If P(t) and g(t) are continuous on an open interval $I = (\alpha, \beta)$, then there exists a unique solution $\mathbf{x} = \phi(t)$ of the initial value problem

$$x' = P(t)x + g(t), x(t_0) = x_0,$$
 (2)

where t_0 is any point in I, and \mathbf{x}_0 is any constant vector with n components. Moreover the solution exists throughout the interval I.

Linear Combinations of Solutions of Homogeneous Systems Are Solutions

THEOREM 6.2.2 (Principle of Superposition). If x_1, x_2, \dots, x_k are solutions of the homogeneous linear system

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} \tag{5}$$

on the interval $I = (\alpha, \beta)$, then the linear combination

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_k\mathbf{x}_k$$

is also a solution of Eq. (5) on I.

Proof

Let $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k$. The result follows from the linear operations of matrix multiplication and differentiation:

$$\begin{aligned} \mathbf{P}(t)\mathbf{x} &= \mathbf{P}(t)[c_1\mathbf{x}_1 + \dots + c_k\mathbf{x}_k] \\ &= c_1\mathbf{P}(t)\mathbf{x}_1 + \dots + c_k\mathbf{P}(t)\mathbf{x}_k \\ &= c_1\mathbf{x}_1' + \dots + c_k\mathbf{x}_k' = \mathbf{x}'. \end{aligned}$$

Definition of Linear Independence

DEFINITION 6.2.3 The *n* vector functions $\mathbf{x}_1, \dots, \mathbf{x}_n$ are said to be **linearly independent** on an interval *I* if the only constants c_1, c_2, \dots, c_n such that

$$c_1 \mathbf{x}_1(t) + \dots + c_n \mathbf{x}_n(t) = \mathbf{0}$$
 (6)

for all $t \in I$ are $c_1 = c_2 = \cdots = c_n = 0$. If there exist constants c_1, c_2, \ldots, c_n , not all zero, such that Eq. (6) is true for all $t \in I$, the vector functions are said to be **linearly dependent** on I.

Jozef Maria Hoene Wronski Józef Maria Hoene-Wroński 1776 –1853

Wronskians and the Struggle for Linear Independence

DEFINITION 6.2.4

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be n solutions of the homogeneous linear system of differential equations $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ and let $\mathbf{X}(t)$ be the $n \times n$ matrix whose jth column is $\mathbf{x}_j(t)$, $j = 1, \ldots, n$,

$$\mathbf{X}(t) = \begin{pmatrix} x_{11}(t) & \cdots & x_{1n}(t) \\ \vdots & & \vdots \\ x_{n1}(t) & \cdots & x_{nn}(t) \end{pmatrix}. \tag{12}$$

The Wronskian $W = W[\mathbf{x}_1, \dots, \mathbf{x}_n]$ of the *n* solutions $\mathbf{x}_1, \dots, \mathbf{x}_n$ is defined by

$$W[\mathbf{x}_1, \dots, \mathbf{x}_n](t) = \det \mathbf{X}(t). \tag{13}$$

THEOREM 6.2.5

Let $x_1, ..., x_n$ be solutions of x' = P(t)x on an interval $I = (\alpha, \beta)$ in which P(t) is continuous.

- (i) If $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent on I, then $W[\mathbf{x}_1, \dots, \mathbf{x}_n](t) \neq 0$ at every point in I,
- (ii) If $\mathbf{x}_1,\ldots,\mathbf{x}_n$ are linearly dependent on I, then $W[\mathbf{x}_1,\ldots,\mathbf{x}_n](t)=0$ at every point in I.

Proof

Assume first that $\mathbf{x}_1,\ldots,\mathbf{x}_n$ are linearly independent on I. We then want to show that $W[\mathbf{x}_1,\ldots,\mathbf{x}_n](t) \neq 0$ throughout I. To do this, we assume the contrary, that is, there is a point $t_0 \in I$ such that $W[\mathbf{x}_1,\ldots,\mathbf{x}_n](t_0) = 0$. This means that the column vectors $\{\mathbf{x}_1(t_0),\ldots,\mathbf{x}_n(t_0)\}$ are linearly dependent (Theorem A.3.6) so that there exist constants $\hat{c}_1,\ldots,\hat{c}_n$, not all zero, such that $\hat{c}_1\mathbf{x}_1(t_0)+\cdots+\hat{c}_n\mathbf{x}_n(t_0)=0$. Then Theorem 6.2.2 implies that $\phi(t)=\hat{c}_1\mathbf{x}_1(t)+\cdots+\hat{c}_n\mathbf{x}_n(t)$ is a solution of $\mathbf{x}'=\mathbf{P}(t)\mathbf{x}$ that satisfies the initial condition $\mathbf{x}(t_0)=0$. The zero solution also satisfies the same initial value problem. The uniqueness part of Theorem 6.2.1 therefore implies that ϕ is the zero solution, that is, $\phi(t)=\hat{c}_1\mathbf{x}_1(t)+\cdots+\hat{c}_n\mathbf{x}_n(t)=0$ for every $t\in(\alpha,\beta)$, contradicting our original assumption that $\mathbf{x}_1,\ldots,\mathbf{x}_n$ are linearly independent on I. This proves (i).

To prove (ii), assume that $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly dependent on I. Then there exist constants $\alpha_1, \dots, \alpha_n$, not all zero, such that $\alpha_1 \mathbf{x}_1(t) + \dots + \alpha_n \mathbf{x}_n(t) = \mathbf{0}$ for every $t \in I$. Consequently, for each $t \in I$, the vectors $\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)$ are linearly dependent. Thus $W[\mathbf{x}_1, \dots, \mathbf{x}_n](t) = \mathbf{0}$ at every point in I (Theorem A.3.6).

Dimension of Solution Space of x' = P(t) x

THEOREM 6.2.6

Let x_1, \dots, x_n be solutions of

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} \tag{14}$$

on the interval $\alpha < t < \beta$ such that, for some point $t_0 \in (\alpha, \beta)$, the Wronskian is nonzero, $W[x_1, \dots, x_n](t_0) \neq 0$. Then each solution $x = \phi(t)$ of Eq. (14) can be expressed as a linear combination of x_1, \dots, x_n ,

$$\phi(t) = \hat{c}_1 \mathbf{x}_1(t) + \dots + \hat{c}_n \mathbf{x}_n(t), \tag{15}$$

where the constants $\hat{c}_1, \dots, \hat{c}_n$ are uniquely determined.

Proof

Let $\phi(t)$ be a given solution of Eq. (14). If we set $\mathbf{x}_0 = \phi(t_0)$, then the vector function ϕ is a solution of the initial value problem

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0. \tag{16}$$

By the principle of superposition, the linear combination $\psi(t) = c_1 \mathbf{x}_1(t) + \dots + c_n \mathbf{x}_n(t)$ is also a solution of (14) for any choice of constants c_1, \dots, c_n . The requirement $\psi(t_0) = \mathbf{x}_0$ leads to the linear algebraic system

$$\mathbf{X}(t_0)\mathbf{c} = \mathbf{x}_0,\tag{17}$$

where X(t) is defined by Eq. (12). Since $W[x_1, \dots, x_n](t_0) \neq 0$, the linear algebraic system (17) has a unique solution (see Theorem A.3.7) that we denote by $\hat{c}_1, \dots, \hat{c}_n$. Thus the particular member $\psi(t) = \hat{c}_1 x_1(t) + \dots + \hat{c}_n x_n(t)$ of the *n*-parameter family represented by $\psi(t)$ also satisfies the initial value problem (16). By the uniqueness part of Theorem 6.2.1, it follows that $\phi = \psi = \hat{c}_1 x_1 + \dots + \hat{c}_n x_n$. Since ϕ is arbitrary, the result holds (with different constants, of course) for every solution of Eq. (14).

THEOREM 6.2.7

Let

$$\mathbf{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix};$$

further let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$ that satisfy the initial conditions

$$\mathbf{x}_1(t_0) = \mathbf{e}_1, \dots, \mathbf{x}_n(t_0) = \mathbf{e}_n,$$

respectively, where t_0 is any point in $\alpha < t < \beta$. Then $\mathbf{x}_1, \dots, \mathbf{x}_n$ form a fundamental set of solutions of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$.

Homogenous Linear Systems With Constant Coefficients

X' = P(t) X where P(t) is a matrix of CONSTANTS

Homogenous Linear Systems With Constant Coefficients

X' = P(t) X where P(t) is a matrix of CONSTANTS

X' = A X where A is an $n \times n$ matrix of CONSTANTS

Homogenous Linear Systems With Constant Coefficients

X' = P(t) X where P(t) is a matrix of CONSTANTS

X' = A X where A is an $n \times n$ matrix of CONSTANTS

$$x' = 5x + 29y - 4z - 1w$$

$$y' = 12x + 21y - 19z + 66w$$

$$z' = -8x + 15y + 7z - 2w$$

$$w' = 4x + 9y + 20z + 20w$$

Linear Systems with Constant Coefficients

Simplest Case

THEOREM 6.3.1

Let $(\lambda_1, \mathbf{v}_1), \ldots, (\lambda_n, \mathbf{v}_n)$ be eigenpairs for the real, $n \times n$ constant matrix A. Assume that the eigenvalues $\lambda_1, \ldots, \lambda_n$ are real and that the corresponding eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent. Then

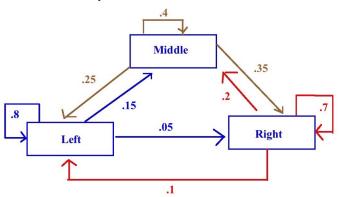
$$\left\{e^{\lambda_1 t} \mathbf{v}_1, \dots, e^{\lambda_n t} \mathbf{v}_n\right\} \tag{6}$$

is a fundamental set of solutions to x' = Ax on the interval $(-\infty, \infty)$. The general solution of x' = Ax is therefore given by

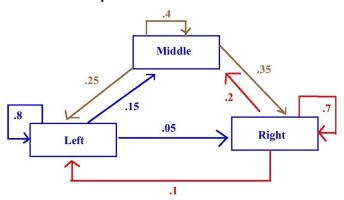
$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n, \tag{7}$$

where c_1, \ldots, c_n are arbitrary constants.

A Differential Equations Model of Political Movement



A Differential Equations Model of Political Movement



$$L' = -.2L + .25M + .1R$$

$$M' = .15L - .6M + .2R$$

$$R' = .05L + .35M - .3R$$

$$X' = A X$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

$$X' = A X$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

$$\mathbf{X'} = A \mathbf{X}$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

Proof: If
$$\mathbf{X} = e^{\lambda t} \vec{v}$$
, then

$$\mathbf{X'} = \mathsf{A} \ \mathbf{X}$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

$$\frac{\text{Proof:}}{\mathbf{X}} \text{ If } \mathbf{X} = e^{\lambda t} \vec{v} \text{, then} \\ \mathbf{X} \ ' = \lambda e^{\lambda t} \vec{v}$$

$$\mathbf{X'} = \mathsf{A} \ \mathbf{X}$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

$$\begin{array}{l} \underline{\text{Proof:}} \ \text{If} \ \mathbf{X} = e^{\lambda t} \vec{v} \text{, then} \\ \mathbf{X} \ ' = \lambda e^{\lambda t} \vec{v} \\ = e^{\lambda t} \lambda \vec{v} \end{array}$$

$$\mathbf{X'} = \mathsf{A} \mathbf{X}$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

$$\begin{array}{l} \underline{\text{Proof:}} \ \text{If} \ \mathbf{X} = e^{\lambda t} \vec{v}, \ \text{then} \\ \mathbf{X} \ ' = \lambda e^{\lambda t} \vec{v} \\ = e^{\lambda t} \lambda \vec{v} \\ = e^{\lambda t} \ \text{A} \ \vec{v} \end{array}$$

$$X' = A X$$

where A is $n \times n$ matrix of constants and **X** is $n \times 1$ vector of functions of t.

Proof: If
$$\mathbf{X} = e^{\lambda t} \vec{v}$$
, then $\mathbf{X}' = \lambda e^{\lambda t} \vec{v}$

$$= e^{\lambda t} \lambda \vec{v}$$

$$= e^{\lambda t} A \vec{v}$$

$$= A e^{\lambda t} \vec{v}$$

$$= A \mathbf{X}$$

Theorem 2 If λ and μ are **distinct** eigenvalues of A with corresponding eigenvectors \vec{v} and \vec{w} (that is, A $\vec{v} = \lambda \ \vec{v}$ and A $\vec{w} = \mu \vec{w}$)

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

Theorem 2 If λ and μ are **distinct** eigenvalues of A with corresponding eigenvectors \vec{v} and \vec{w} (that is, A $\vec{v} = \lambda \ \vec{v}$ and A $\vec{w} = \mu \vec{w}$) then

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

<u>Proof of 1</u>: Suppose C1 and C2 are constants such that (*) C1 \vec{v} + C2 \vec{w} = $\vec{0}$. Multiply (*) by A to obtain (**) C1 λ \vec{v} + C2 μ \vec{w} = $\vec{0}$ Multiply (*) by μ to obtain (***) C1 μ \vec{v} + C2 μ \vec{w} = $\vec{0}$ Subtract (***) from (**)to obtain C1(λ - μ) \vec{v} = $\vec{0}$ But λ - $\mu \neq 0$ and $\vec{v} \neq 0$; Hence C1 = 0 which implies C2 \vec{w} = $\vec{0}$ and that implies C2 = 0.

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

$$C1 e^{\lambda t} \vec{v} + C2 e^{\mu t} \vec{w} = \vec{0}.$$

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

C1
$$e^{\lambda t}\vec{v}$$
 + C2 $e^{\mu t}\vec{w}$ = $\vec{0}$.
Evaluate both sides at t = 0:

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

C1
$$e^{\lambda t}\vec{v}$$
 + C2 $e^{\mu t}\vec{w}$ = $\vec{0}$.
Evaluate both sides at $t=0$:
C1 $e^{\lambda 0}\vec{v}$ + C2 $e^{\mu 0}\vec{w}$ = $\vec{0}$

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

C1
$$e^{\lambda t}\vec{v}$$
 + C2 $e^{\mu t}\vec{w}$ = $\vec{0}$.
Evaluate both sides at $t=0$:
C1 $e^{\lambda 0}\vec{v}$ + C2 $e^{\mu 0}\vec{w}$ = $\vec{0}$
C1 $e^{0}\vec{v}$ + C2 $e^{0}\vec{w}$ = $\vec{0}$

- 1. $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

C1
$$e^{\lambda t}\vec{v}$$
 + C2 $e^{\mu t}\vec{w}$ = $\vec{0}$.
Evaluate both sides at $t=0$:
C1 $e^{\lambda 0}\vec{v}$ + C2 $e^{\mu 0}\vec{w}$ = $\vec{0}$
C1 $e^{0}\vec{v}$ + C2 $e^{0}\vec{w}$ = $\vec{0}$
C1 \vec{v} + C2 \vec{w} = $\vec{0}$
which implies C1 and C2 are both 0.

A Generalization of Theorem 2

Theorem 3 If λ , μ and α are **distinct** eigenvalues of A with corresponding eigenvectors \vec{v} , \vec{w} and \vec{u} (that is, A $\vec{v} = \lambda \ \vec{v}$, A $\vec{w} = \mu \vec{w}$, A $\vec{u} = \alpha \vec{u}$) then

- 1. $\{\vec{v}, \vec{w}, \vec{u}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}, e^{\alpha t}\vec{u}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$

A Even Bigger Generalization of Theorem 2

Theorem 4 If $\lambda_1, \lambda_2, ..., \lambda_k$, are **distinct** eigenvalues of A with corresponding eigenvectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_k}$ (that is, A $\vec{v_i} = \lambda_i$ for each i = 1, 2, 3, ..., k then

- 1. $\{\vec{v_1}, \vec{v_2}, ..., \vec{v_k}\}$ is a linearly independent set of vectors
- 2. $\{e^{\lambda_1 t} \vec{v_1}, e^{\lambda_2 t} \vec{v_2}, ..., e^{\lambda_k t} \vec{v_k}\}$ is a linearly independent set of solutions of $\mathbf{X'} = A\mathbf{X}$