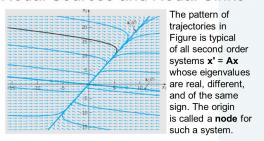
MATH 226: Differential Equations

Nodal Sources and Nodal Sinks



Notes on Assignment 8
Assignment 9

In Handouts Folder:

Unequal Roots.mw
Problem 30 on Page 144.maple
PhasePlane Tutorial (also need PlotPhasePlane.m)
Solving Linear System in MATLAB

Announcements

For Next Time, Work Through

Complex Numbers

- Use the imaginary unit i to write complex numbers, and add, subtract, and multiply complex numbers.
- Find complex solutions of quadratic equations.
- Write the trigonometric forms of complex numbers.
- Find powers and nth roots of complex numbers.

Our Main Agenda

Solve X' = A X where A is an $n \times n$ matrix of constants and X is an n-dimensional vector of functions.

Results So Far

Theorem: The set of solutions is an *n*-dimensional vector space.

We can find some solutions of the form $e^{\lambda t}\vec{v}$ where λ is an eigenvalue of A and \vec{v} is an associated eigenvector.

Distinct eigenvalues give rise to linearly independent solutions.

Outstanding Questions

How to handle complex eigenvalues.

How to find *n* linearly independent solutions to $\mathbf{X'} = \mathbf{A} \mathbf{X}$ when there are not enough of the form $e^{\lambda t} \vec{v}$.

Comments on Some Homework Problems

Section 3.1 : Exercise 38 Show that $\lambda=0$ is an eigenvalue for a matrix **A** if and only if $\det(\mathbf{A})=0$.

Must Prove Both:

- ▶ If $\lambda = 0$ is an eigenvalue, then $det(\mathbf{A}) = 0$, **AND**
- ▶ If $det(\mathbf{A}) = 0$, then $\lambda = 0$ is an eigenvalue of \mathbf{A} .

If
$$\lambda = 0$$
 is an eigenvalue, then $\det(\mathbf{A}) = 0$

Proof:

If $\lambda=0$ is an eigenvalue, then there is a nonzero vector \vec{v} such that $\vec{A} \ \vec{v} = \vec{0}$.

Hence **A** is not invertible so $det(\mathbf{A}) = 0$.

If $det(\mathbf{A}) = 0$, then $\lambda = 0$ is an eigenvalue of \mathbf{A} .

Proof: Note that $\mathbf{A} = \mathbf{A} - \mathbf{0} = \mathbf{A} - 0 \mathbf{I}$.

If $det(\mathbf{A}) = 0$, then $det(\mathbf{A} - 0 \mathbf{I}) = 0$

so 0 satisfies the characteristic equation for **A** and hence is an eigenvalue.

Comments on Some Homework Problems

Section 3.2 Exercise 30c

Use a computer to draw component plots of the initial value problem and the equilibrium solutions.

See Problem 30 on Page 144.maple

Current Goal: Continue Study of Linear Homogeneous Systems With Constant Coefficients X' = A X 2×2 Case

Theorem: If λ and μ are distinct eigenvalues (real or complex) of a 2 \times 2 matrix A having corresponding eigenvectors \vec{v} and \vec{w} , then every solution of $\mathbf{x'} = A \mathbf{x}$ is a linear combination of $e^{\lambda t} \vec{v}$ and $e^{\mu t} \vec{w}$.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Characteristic Polynomial of A is $det(A - \lambda I) = \lambda^2 - (a + d)\lambda + ad - bc$ λ^2 - Trace(A) λ + Det A

Characteristic Equation: $det(A - \lambda I) = 0$ Eigenvalues Are Roots of Characteristic Polynomial

$$\lambda = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)}}{2}$$
$$\lambda = \frac{(a+d) \pm \sqrt{(a-d)^2 + 4bc}}{2}$$

$$\lambda = \frac{(a+d) \pm \sqrt{(a-d)^2 + 4bc}}{2}$$

Possibilities

2 Real Unequal Roots

2 Complex Roots

1 Real Double Root

More About 2 Real Unequal Roots Case

$$\mathbf{x'} = A \mathbf{x}$$

The Origin (0,0) is an equilibrium and is called a **NODE**

More About 2 Real Unequal Roots Case x' = A xThe Origin (0,0) is an equilibrium and is called a **NODE**

$$\lambda_1,\lambda_2 < 0$$
 Node is Asymptotically Stable NODAL SINK

$$\lambda_1, \lambda_2 > 0$$
 Node is Unstable NODAL SOURCE

Opposite Sign Node is Unstable

Nodal Sink
$$\begin{bmatrix} -7 & 3 \\ 2 & -2 \end{bmatrix} \quad \lambda = -1, -8$$

Nodal Source
$$\begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$$
 $\lambda = 3, 2$

Saddle Point
$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$$
 $\lambda = 3, -1$

ZERO AS AN EIGENVALUE

Example: Richardson Arms Race Model

With Parallel Stable Lines

$$x' = -mx + ay + r$$
$$y' = bx - ny + s$$

Slope of
$$L = \frac{m}{a}$$

Slope of $L' = \frac{b}{n}$

Parallel if
$$\frac{m}{a} = \frac{b}{n}$$

$$A = \begin{bmatrix} -m & a \\ b & -n \end{bmatrix}$$

$$mn = ab \Leftrightarrow mn - ab = 0 \Leftrightarrow det(A) = 0$$
 Characteristic Equation:
$$\lambda^2 + (m+n)\lambda + (mn-ab) = 0$$

$$\lambda^2 + (m+n)\lambda = 0$$

$$\lambda(\lambda + (m+n)) = 0 \Rightarrow \lambda = 0, \lambda = -(m+n)$$

ZERO AS AN EIGENVALUE EXAMPLE

$$m = 3, a = 6, n = 8, b = 4$$

$$A = \begin{bmatrix} -3 & 6 \\ 4 & -8 \end{bmatrix}$$

$$\det \begin{bmatrix} -3 - \lambda & 6 \\ 4 & -8 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda)(-8 - \lambda) - 24 = \lambda^2 + 11\lambda + 24 - 24$$

$$= \lambda^2 + 11\lambda = \lambda(\lambda + 11)$$

$$\lambda = 0, \lambda = -11$$
For $\lambda = -11$:
$$\begin{bmatrix} 8 & 6 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$4v_1 + 3v_2 = 0$$

$$\vec{v} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

$$\vec{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\lambda = -11, \vec{v} = \begin{bmatrix} -3\\4 \end{bmatrix}$$
$$\lambda = 0, \vec{v} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

General Solution To
$$x' = -3x + 6y$$

$$y' = 4x = 8y$$
is $\mathbf{x} = C_1 e^{0t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{-11t} \begin{bmatrix} -3 \\ 4 \end{bmatrix}$

$$x = 2C_1 - 3C_2 e^{-11t}$$

$$y = C_1 + 4C_2 e^{-11t}$$

Particular Solution:
$$(x_0, y_0)$$
 at $t = 0$
 $x_0 = 2C_1 - 3C_2$
 $y_0 = C_1 + 4C_2$

$$2C_1 - 3C_2 = x_0$$

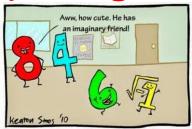
 $-2C_1 - 8C_2 = -2y_0$
Add Equations
 $-11C_2 = x_0 - 2y_0$
 $8C_1 - 12C_2 = 4x_0$
 $3C_1 + 12C_2 = 3y_0$
Add Equations
 $11C_1 = 4x_0 + 3y_0$

$$C_1 = \frac{4x_0 + 3y_0}{11}, C_2 = \frac{-x_0 + 2y_0}{11}$$

$$x = 2\left(\frac{4x_0 + 3y_0}{11}\right) - 3\left(\frac{-x_0 + 2y_0}{11}\right)e^{-11t}$$
$$y = \frac{4x_0 + 3y_0}{11} + 4\left(\frac{-x_0 + 2y_0}{11}\right)e^{-11t}$$

Next Time

Complex Eigenvalues



See You On 3 - 28

