MATH 226: Differential Equations

Class 14: March 16, 2022

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Notes on Exam 1 Existence and Uniqueness Theorems for Linear **Systems** Doomsday Model Data Complex Numbers (Also See Course Website)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Announcements

Mathematician of the Day Lewis F. Richardson

October 11, 1881- September 30, 1953

The equations are merely a description of what people would do if they did not stop and think.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Today's Topics

More Analysis of The Richardson Arms Race Model

More About Systems of Two First Order Linear Differential Equations With Constant Coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Richardson Arms Race Model

Lewis F. Richardson Arms And Insecurity: A Mathematical Study Of The Causes And Origins Of War x(t) = Arms Expenditure of Blue Nation y(t) = Arms Expenditure of Red Nation

$$x' = ay - mx + r$$

$$y' = bx - ny + s$$

where a, b, m, n are positive constants while r and s are constants. Structure: $\vec{X} = A\vec{X} + \vec{b}$ or $\mathbf{x'} = A\mathbf{x} + \mathbf{b}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$\mathbf{X'} = A \mathbf{X} + \mathbf{b}$$

Make Change of Variables

 $X = x - x^*$

$$Y = y - y^*$$

where $ay^* - mx^* + r = 0$, $bx^* - ny^* + s = 0$

To Convert To Homogeneous System of Form $\mathbf{X'} = A \mathbf{X}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w}$

where α and β are arbitrary constants λ is an eigenvalue of A with associated eigenvector \vec{v} and $\mu \neq \lambda$ is an eigenvalue of A with associated eigenvector \vec{w} .

The solution of the original system is then

$$\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w} + \begin{bmatrix} x^* \\ y^* \end{bmatrix}$$

Two Particular Examples:

x' = -5x + 4y + 1 $y' = 3x - 4y + 2$	x' = 11y - 9x - 15y' = 12x - 8y - 60
$(x^*, y^*) = (\frac{3}{2}, \frac{13}{8})$	$(x^*, y^*) = (13, 12)$
$A = \begin{bmatrix} -5 & 4 \\ 3 & -4 \end{bmatrix}$	$A = \begin{bmatrix} -9 & 11 \\ 12 & -8 \end{bmatrix}$
$egin{aligned} \lambda &= -1, ec{v} = egin{bmatrix} 1 \ 1 \ \end{bmatrix} \ \mu &= -8, ec{w} = egin{bmatrix} -4 \ 3 \end{bmatrix} \end{aligned}$	$egin{aligned} \lambda &= 3, ec{\mathbf{v}} = egin{bmatrix} 11 \ 12 \end{bmatrix} \ \mu &= -20, ec{\mathbf{w}} = egin{bmatrix} 1 \ -1 \end{bmatrix} \end{aligned}$
$\alpha e^{-t} \begin{bmatrix} 1\\1 \end{bmatrix} + \beta e^{-8t} \begin{bmatrix} -4\\3 \end{bmatrix} + \begin{bmatrix} \frac{3}{2}\\\frac{13}{8} \end{bmatrix}$	$\alpha e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + \beta e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix} + \begin{bmatrix} 13\\12 \end{bmatrix}$

Existence and Uniqueness Theorems for Linear Systems

Theorem 2.4.1: If p(t) and g(t) are continuous functions on an open interval I containing the point $t = t_o$ and y_o is any prescribed initial value, then there exists a unique solution $y = \phi(t)$ of the differential equation that satisfies the differential equation

y' + p(t)y = g(t)for all *t* in *I* with $\phi(t_o) = \underline{y_o}$.

Theorem 3.2.1: If P(t) is an $n \times n$ matrix and $\mathbf{g}(t)$ is an $n \times 1$ vector whose entries are continuous on an open interval I containing the point t_o and $\underline{\mathbf{y}}_{\underline{o}}$ is any prescribed initial value, then there is a unique solution $\mathbf{y} = \mathbf{\Phi}(t)$ of the system of differential equations

$$\mathbf{X}' = P(t)\mathbf{X} + \mathbf{g}(t)$$

for all t in I with $\Phi(t_o) = \mathbf{y}_0$.

Theorem 3.2.1: If P(t) is an $n \times n$ matrix and $\mathbf{g}(t)$ is an $n \times 1$ vector whose entries are continuous on an open interval I containing the point t_o and $\underline{\mathbf{y}}_{\underline{\mathbf{0}}}$ is any prescribed initial value, then there is a unique solution $\mathbf{y} = \mathbf{\Phi}(t)$ of the system of differential equations

$$\mathbf{X}' = P(t)\mathbf{X} + \mathbf{g}(t)$$

for all t in I with $\Phi(t_o) = \mathbf{y}_0$.

What Does This Theorem Say in the case P(t) is an $n \times n$ matrix of constants and g(t) is identically 0? There is a unique solution valid for all real numbers!

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Focus on Linear Homogeneous System with Constant Coefficients X' = A X

where A is a 2 \times 2 matrix.

Begin with Earlier Example x' = -9x + 11y y' = 12x - 8y $A = \begin{bmatrix} -9 & 11\\ 12 & -8 \end{bmatrix}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Two solutions to the homogeneous system are

$$e^{3t}\vec{v}$$
 and $e^{-20t}\vec{w}$
 $e^{3t}\begin{bmatrix}11\\12\end{bmatrix}$ and $e^{-20t}\begin{bmatrix}1\\-1\end{bmatrix}$
Then $C_1e^{3t}\begin{bmatrix}11\\12\end{bmatrix} + C_2e^{-20t}\begin{bmatrix}1\\-1\end{bmatrix}$ is a solution for any constants
 C_1 and C_2 .

Now suppose $\Phi(t)$ is any solution to the system with $\Phi(0) = \begin{vmatrix} x_0 \\ y_0 \end{vmatrix}$

CLAIM: We can find C1 and C2 so that

$$\Phi(t) = C_1 e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

CLAIM: We can find C1 and C2 so that

$$\Phi(t) = C_1 e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

NEED: Agreement at
$$t = 0$$
:
 $C_1 e^{3 \times 0} \begin{bmatrix} 11 \\ 12 \end{bmatrix} + C_2 e^{-20 \times 0} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

$$C_1 \begin{bmatrix} 11\\12 \end{bmatrix} + C_2 \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} x_0\\y_0 \end{bmatrix}$$

$$11C_1 + 12C2 = x_0 12C_1 - 1C_2 = y_0$$

$$\begin{bmatrix} 11 & 1 \\ 12 & -1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$\begin{bmatrix} 11 & 1 \\ 12 & -1 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

has a solution for all x_0, y_0 exactly when the coefficient matrix $M = \begin{bmatrix} 11 & 1\\ 12 & -1 \end{bmatrix}$ is invertible

and this happens if and only the columns of the coefficient matrix are a linearly independent set of vectors.

But the columns are \vec{v} and \vec{w} which are eigenvectors belonging to distinct eigenvalues

so they do form a linearly independent set.

The solution will be
$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = M^{-1} \begin{bmatrix} x_0\\ y_o \end{bmatrix} = \frac{-1}{23} \begin{bmatrix} -1 & -1\\ -12 & 11 \end{bmatrix} \begin{bmatrix} x_0\\ y_o \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The solution will be

$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = M^{-1} \begin{bmatrix} x_0\\ y_o \end{bmatrix} = \frac{-1}{23} \begin{bmatrix} -1 & -1\\ -12 & 11 \end{bmatrix} \begin{bmatrix} x_0\\ y_o \end{bmatrix}$$

Thus
$$\begin{bmatrix} C1\\ C2 \end{bmatrix} = \begin{bmatrix} \frac{x_0 + y_0}{23}\\ \frac{12x_0 - 11y_0}{23} \end{bmatrix}.$$

We have found one solution of the homogeneous system that

- Agrees with Φ and t = 0 and
- ls a linear combination of $e^{3t}\vec{v}$ and $e^{-20t}\vec{w}$.

By The Uniqueness Theorem, Φ **must** be a linear combination of these two solutions.

Thus these two particular solutions are a **Spanning Set** for the collection of all solutions to the homogeneous system.

The two particular solutions $e^{3t}\vec{v}$ and $e^{-20t}\vec{w}$ form a **Spanning Set** for the collection of all solutions to the homogeneous system.

What Made This Work? \vec{v}, \vec{w} is a linearly independent set of vectorswhich we know is true since they are associated with two distincteigenvalues.

Moreover, the two solutions themselves are Linearly Independent Solutions. They form a **BASIS** for the set of all solutions to the homogeneous system of differential equations X' = A X.

Theorem: Let λ and μ be distinct eigenvalues for a square matrix A with corresponding eigenvectors \vec{v} and \vec{w} . Then $e^{\lambda t}\vec{v}, e^{\mu t}\vec{w}$ is a linearly independent set of solutions for $\mathbf{X'} = A \mathbf{X}$.

<u>Theorem</u>: Let λ and μ be distinct eigenvalues for a square matrix A with corresponding eigenvectors \vec{v} and \vec{w} . Then $\{e^{3t}\vec{v}, e^{-20t}\vec{w}\}$ is a Linearly Independent set of solutions of $\mathbf{X'} = A \mathbf{X}$.

<u>Proof</u>: Suppose there are constants C_1 and C_2 such that

$$C_1 e^{\lambda t} \vec{v} + C_2 e^{\mu t} \vec{w} = \vec{0}$$

for all t where $\vec{0}$ is the function identically equal to the zero vector for all t.

Evaluate this identity at t = 0:

$$C_1\vec{v}+C_2\vec{w}=0$$

BUT $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors. Hence it must be that $C_1 = 0$ and $C_2 = 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We used the fact that $\{\vec{v}, \vec{w}\}$ is a linearly independent set of vectors to prove that

- $\{e^{3t}\vec{v}, e^{-20t}\vec{w}\}$ is a spanning set for the solutions of $\mathbf{X'} = A$ **X** and
- $\{e^{3t}\vec{v}, e^{-20t}\vec{w}\}$ is a linearly independent set of solutions of **X**' = A **X**
- The Linear Independence of $\{\vec{v}, \vec{w}\}$ followed from the fact that they were associated with distinct (unequal) eigenvalues.

Another Linear Homogeneous System with Constant Coefficients

 $\mathbf{X'} = A \mathbf{X}$ where A is a 2 \times 2 matrix.

x' = 2x + 1yy' = -3x + 6y

 $A = \begin{bmatrix} 2 & 1 \\ -3 & 6 \end{bmatrix}$ Characteristic Equation (det $A - \lambda I$) = 0 is $\lambda^2 - 8\lambda + 15 = (\lambda - 3)(\lambda - 5) = 0$ so eigenvalues are $\lambda = 3, \mu = 5$ and solution to the systems of first order differential equations is $C_1 e^{3t} \vec{v} + C_2 e^{5t} \vec{w}$ where C_1, C_2 are arbitrary constants and \vec{v}, \vec{w} are eigenvectors associated with $\lambda = 3$ and $\lambda = 5$, respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

We can write the general solution $C_1 e^{3t} \vec{v} + C_2 e^{5t} \vec{w}$ as $e^{5t} (C_1 e^{-2t} \vec{v} + C_2 \vec{w})$

- If $C_2 = 0$, then solution does what as t gets large? Moves along the vector \vec{v} .
- If $C_2 \neq 0$, then what does the solution do as t gets large? Approaches the vector \vec{w} .

イロト イヨト イヨト

Median: 91 Average: 88.8

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙