MATH 226: Differential Equations

Class 13: March 14, 2022

MATLAB Worksheet

Linear Algebra Computations with Maple

Linear Algebra Computations with MATLAB

Graded Project 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Announcements

► Exam 1

- Tonight
- 7 PM ? (No Time Limit)
- Axinn 229
- No Calculators, Books, Notes, Smart Phones, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Focus on Material in Chapters 1 and 2

Exam 1 Tips

- Read Overall Directions on Cover Page
- Read Each Problem Statement Carefully

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Pick "Easy" Problem To Do First
- Show All Intermediate Steps
- Include Explanations
- Pay Attention to Units
- Double Check Your Work

Mathematician of the Week Vijay Kumar Patodi

March 12, 1945 – December 21, 1976

Brilliant work at young age in analysis and geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Today's Topic

Analysis of The Richardson Arms Race Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Richardson Arms Race Model

Lewis F. Richardson 1881 - 1953 x(t) = Arms Expenditure of Blue Nation y(t) = Arms Expenditure of Red Nation

$$x' = ay - mx + r$$
$$y' = bx - ny + s$$

where a, b, m, n are positive constants while r and s are constants. Structure: $\vec{X} = A\vec{X} + \vec{b}$ or $\mathbf{x'} = A\mathbf{x} + \mathbf{b}$

$$x' = ay - mx + r$$
$$y' = bx - ny + s$$

where a, b, m, n are positive constants while r and s are constants.

Find stable Lines L and L' where x' = 0 and y' = 0.

$$L: y = \frac{m}{a}x - \frac{r}{a}$$
$$L': y = \frac{b}{n}x + \frac{s}{n}$$

Determine the Stable Point (x^*, y^*) where lines L and L' intersect.

$$ay^* - mx^* + r = 0, \ bx^* - ny^* + s = 0$$

$$x' = ay - mx + r$$
$$y' = bx - ny + s$$

$$ay^* - mx^* + r = 0, \ bx^* - ny^* + s = 0$$

Make Change of Variable
$$X = x - x^*$$
, $Y = y - y^*$
Then
 $X' = x' = a(Y+y^*) - m(X+x^*) + r = aY - mX + (ay^* - mx^* + r)$

$$=aY-mX+0=aY-mX$$

Similarly, Y' = bX - nYWrite system as X' = aY - mXY' = bX - nY

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We transform

$$x' = ay - mx + r$$

 $y' = bx - ny + s$
a nonhomgeneous system into
 $X' = -mX + aY$
 $Y' = bX - nY$
a homogeneous system.

X' = A **X** where

$$A = \begin{bmatrix} -m & a \\ b & -n \end{bmatrix}$$

We can solve by finding eigenvalues and eigenvectors of A

・ロト・日本・ヨト・ヨー うへの

 $\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w}$

where α and β are arbitrary constants λ is an eigenvalue of A with associated eigenvector \vec{v} and $\mu \neq \lambda$ is an eigenvalue of A with associated eigenvector \vec{w} .

The solution of the original system is then

$$\alpha e^{\lambda t} \vec{v} + \beta e^{\mu t} \vec{w} + \begin{bmatrix} x^* \\ y^* \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two Particular Examples:

x' = -5x + 4y + 1 $y' = 3x - 4y + 2$	x' = 11y - 9x - 15y' = 12x - 8y - 60
$(x^*, y^*) = (\frac{3}{2}, \frac{13}{8})$	$(x^*, y^*) = (13, 12)$
$A = \begin{bmatrix} -5 & 4 \\ 3 & -4 \end{bmatrix}$	$A = \begin{bmatrix} -9 & 11 \\ 12 & -8 \end{bmatrix}$
$\lambda = -1, ec{v} = egin{bmatrix} ec{1} \ ec{1} \end{bmatrix}$	$\lambda = 3, \vec{v} = \begin{bmatrix} 11\\12 \end{bmatrix}$
$\mu = -8, \vec{w} = \begin{bmatrix} -4\\ 3 \end{bmatrix}$	$\mu=-20,ec{w}=egin{bmatrix}1\-1\end{bmatrix}$
$\alpha e^{-t} \begin{bmatrix} 1\\1 \end{bmatrix} + \beta e^{-8t} \begin{bmatrix} -4\\3 \end{bmatrix} + \begin{bmatrix} \frac{3}{2}\\\frac{13}{8} \end{bmatrix}$	$ \left \alpha e^{3t} \begin{bmatrix} 11\\12 \end{bmatrix} + \beta e^{-20t} \begin{bmatrix} 1\\-1 \end{bmatrix} + \begin{bmatrix} 13\\12 \end{bmatrix} \right $

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

・ロト・日本・日本・日本・日本・日本