MATH 226 Differential Equations

March 11, 2022

KORK ERKER ADA ADA KORA

Assignment 8 Eigenvalues in MATLAB

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Announcements

▶ First Team Projects Due Today ? 5 PM

\blacktriangleright Fxam 1

- \blacktriangleright Monday
- \triangleright 7 PM ? (No Time Limit)
- \triangleright 229 Axinn
- ▶ No Calculators, Books, Notes, Smart Phones, etc.

KORKARYKERKER POLO

▶ Focus on Material in Chapters 1 and 2

Today's Topics

Introduction To Systems of First Order Differential Equations

KELK KØLK VELKEN EL 1990

- ▶ Lotka Volterra Predator Prey Model
- **Richardson Arms Race Model**
- ▶ Kermack McKendrick Epidemic Model
- \blacktriangleright Home Heating Model
- **Ferrorism Recruitment Model**

Initial Concern: Homogeneous Systems of 2 First Order Differential Equations With Constant Coefficients

$$
x' = ax + by, y' = cx + dy
$$

$$
\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

$$
\mathbf{X}' = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X}
$$

Ideas and Tools From Linear Algebra Are Essential To This **Study**

EIGENVALUES AND EIGENVECTORS

A $n \times n$ [Square Matrix] \vec{x} $n \times 1$ [Element of R^n] Then $A\vec{x}$ is another vector in R^n .

Is there a **nonzero** vector \vec{v} and a constant λ such that $A\vec{v} = \lambda \vec{v}$? The equation $A\vec{v} = \lambda \vec{v}$ is equivalent to $A\vec{v} - \lambda \vec{v} = \vec{0}$ or $(A - \lambda I)\vec{v} = \vec{0}$ which is a system of homogeneous equations. The system has nontrivial solution if and only if $(A - \lambda I)$ is Non-Invertible.

$$
\Rightarrow det(A - \lambda I) = 0.
$$

KORKARYKERKER POLO

Example $x' = -13x + 6y$ $y' = 2x - 2y$ $\bigl[x \bigr]$ y $\begin{bmatrix} 1 \end{bmatrix}^{\prime} = \begin{bmatrix} -13 & 6 \end{bmatrix}$ 2 −2 $\big]$ $\big[$ x y 1 $\vec{x}' = A\vec{x}$ or $\mathbf{X'} = A \mathbf{X}$ Looks like $x' = ax$ which has solution $x = Ce^{at}.$ Could there be a scalar λ and **nonzero** vector \vec{v} such that $\vec{x} = e^{\lambda t} \vec{v}$ is a solution? $\vec{x}'=A\vec{x}$ $\vec{x}'=A\vec{x}$ $\vec{x}'=A\vec{x}$ $\vec{x}'=A\vec{x}$ $\vec{x}'=A\vec{x}$ becomes $\lambda e^{\lambda t}\vec{v}$, $\equiv Ae^{\lambda t}\vec{v}$ $\equiv Ae^{\lambda t}\vec{v}$ $\equiv Ae^{\lambda t}\vec{v}$ or Andrew Southern Andrew Andrew

Finding Eigenvalues and Associated Eigenvectors Example : $A = \begin{bmatrix} -13 & 6 \\ 2 & 6 \end{bmatrix}$ 2 −2 1 $A - \lambda I = \begin{bmatrix} -13 - \lambda & 6 \\ 2 & 2 \end{bmatrix}$ 2 $-2-\lambda$ 1 det $(A - \lambda I) = (-13 - \lambda)(-2 - \lambda) - (2)(6)$ $\det \, \left(A - \lambda I \right) = 26 + 13 \lambda + 2 \lambda + \lambda^2 - 12$ det $(A - \lambda I) = \lambda^2 + 15\lambda + 14 = (\lambda + 14)(\lambda + 1)$ $\lambda = -14$ or $\lambda = -1$.

KORKARYKERKER POLO

$$
A = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix}
$$

For $\lambda = -1$, $A - \lambda I = \begin{bmatrix} -13 - (-1) & 6 \\ 2 & -2 - (-1) \end{bmatrix}$

$$
A - \lambda I = \begin{bmatrix} -12 & 6 \\ 2 & -1 \end{bmatrix}
$$

Row Reduces to $\begin{bmatrix} -2 & 1 \\ 0 & 0 \end{bmatrix}$

$$
-2v_1 + v_2 = 0 \text{ so } v_2 = 2v_1
$$

so a corresponding eigenvector is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
One Solution to $\vec{x}' = A\vec{x}$ is $e^{-t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$
A = \begin{bmatrix} -13 & 6 \\ 2 & -2 \end{bmatrix}
$$

For $\lambda = -14$, $A - \lambda I = \begin{bmatrix} -13 - (-14) & 6 \\ 2 & -2 - (-14) \end{bmatrix}$

$$
A - \lambda I = \begin{bmatrix} 1 & 6 \\ 2 & 12 \end{bmatrix}
$$

Row Reduces to $\begin{bmatrix} 1 & 6 \\ 0 & 0 \end{bmatrix}$
 $w_1 + 6w_2 = 0$ so $w_2 = -\frac{1}{6}w_1$
so a corresponding eigenvector is $\begin{bmatrix} 6 \\ -1 \end{bmatrix}$.
Another Solution to $\vec{x}' = A\vec{x}$ is $e^{-14t} \begin{bmatrix} 6 \\ -1 \end{bmatrix}$

Suppose X_1 and X_2 are each solutions of $X' = AX$. Let α and β be any two constants. Claim $\alpha X_1 + \beta X_2$ is also a solution

Proof: On One Hand: $(\alpha X_1 + \beta X_2)' = \alpha X_1' + \beta X_2' = \alpha A X_1 + \beta A X_2$ On Other Hand : $A(\alpha X_1 + \beta X_2) = \alpha A X_1 + \beta A X_2$

The set of solutions to $X' = AX$ is a VECTOR SPACE.

KORKARYKERKER POLO

Theorem: Suppose $\lambda \neq \mu$ are two distinct eigenvalues of a square matrix A with respective eigenvectors \vec{v} and \vec{w} ; That is,

$$
A\vec{v} = \lambda \vec{v} \text{ and } A\vec{w} = \mu \vec{w}
$$

Then $\{\vec{v}, \vec{w}\}$ is a Linearly Independent set of vectors.

Proof: Suppose a and b are constants such that $(*)$ a $\vec{v} + b\vec{w} = \vec{0}$ First, Multiply (*) by A: $aA\vec{v} + bA\vec{w} = A\vec{0} = \vec{0}$ $(**)$ a $\lambda \vec{v} + b\mu \vec{w} = \vec{0}$ Next, Multiply $(*)$ by μ to obtain $(* **)$ au $\vec{v} + b\mu\vec{w} = \vec{0}$ Now subtract (***) from (**): $a(\lambda - \mu)\vec{v} = \vec{0}$ Since $\lambda \neq \mu$ and $\vec{v} \neq \vec{0}$, we must have $a = 0$.

But this means $b\vec{w} = \vec{0}$ $b\vec{w} = \vec{0}$ and he[nce](#page-10-0) $b \rightleftharpoons 0.4 \Rightarrow 4 \Rightarrow b \Rightarrow c$ $b \rightleftharpoons 0.4 \Rightarrow 4 \Rightarrow b \Rightarrow c$ $b \rightleftharpoons 0.4 \Rightarrow 4 \Rightarrow b \Rightarrow c$