MATH 223
Some Notes on Assignment 30
Exercises 3, 4, 7 11, and 14 of Chapter 8.

3: Let F be the vector field F(z,y, 2z) = (1,2,3). Show that divergence and curl of F is zero.

Solution: Divergence is 1, +2,+3, =0+04+0=0.
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4: Let F be the vector field F(z,vy,2) = (22, 22,y2). Find the divergence and curl of F at (3,2,1) and
(1,2,3).
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Solution: Divergence is (z%), + (z2)y + (y2), =22+ 0+y =2z +y.
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= ((y2)y — (£2)2)i = ((y2)e — 2D)j + ((22)0 — (y2)y)k = (z —2)i = (0= 0)j + (2 = Ok = (2 — 2,0, 2)
Curl at (3,2,1) = (1-3,0,1) = (-2,0,1); Curl at (1,2,3) = (3 -1,0,3) = (2,0,3).

7: Show that the divergence and curl of any constant vector field are zero.

Solution: The result follows from the fact that every partial derivative of every component of the vector
field will be 0.

11: A vector field is solenoidal if its divergence is identically 0. Show that the curl F is always
solenoidal.

Solution: This result follows from the theorem that the divergence of the curl is always 0.

14: Let F = Varctan(y/x) Show that curl F is identically zero and div F is also identically 0.
Solution: Computing the gradient of arctan(y/z), we have
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