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MATH 223
Some Notes on Assignment 30

Exercises 3, 4, 7 11, and 14 of Chapter 8.

3: Let F be the vector field F(x, y, z) = (1, 2, 3). Show that divergence and curl of F is zero.

Solution: Divergence is 1x + 2y + 3z = 0 + 0 + 0 = 0.
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4: Let F be the vector field F(x, y, z) = (x2, xz, yz). Find the divergence and curl of F at (3,2,1) and
(1,2,3).

Solution: Divergence is (x2)x + (xz)y + (yz)z = 2x + 0 + y = 2x + y.
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Curl at (3,2,1) = (1 -3,0,1) = (-2,0,1); Curl at (1,2,3) = (3 -1,0,3) = (2,0,3).

7: Show that the divergence and curl of any constant vector field are zero.

Solution: The result follows from the fact that every partial derivative of every component of the vector
field will be 0.

11: A vector field is solenoidal if its divergence is identically 0. Show that the curl F is always
solenoidal.

Solution: This result follows from the theorem that the divergence of the curl is always 0.

14: Let F = ∇ arctan(y/x) Show that curl F is identically zero and div F is also identically 0.

Solution: Computing the gradient of arctan(y/x), we have
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