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MATH 223
Some Notes on Assignment 9

Exercises 49ab, 51, 52a, 31 and 33 in Chapter 3.

49ab. Graph a set of indifference curves for the utility functions specified:
Solution:

(a) Curves of indifference for u(x, y) = x + y (b) Curves of indifference for u(x, y) = ln xy.

51. With a total of $D to spend on apples and bananas, what combination will maximize
Sydney’s utility? Solution: From example 2 in section 3.5.1 we have Sydney’s utility
function for x 1 dollar apples and y 50 cent bananas is s(x, y) = 15

√
x 5
√

y. If Sydney is
spending D total dollars on apples and bananas then we have D = x + y

2 . If we solve for
x, we can then write the utility function in terms of y only.

D = x + y

2 → D − y

2 = x, s(x, y) = 15
√

x 5
√

y → s(y) = 15
√

D − y

2
5
√

y

The constrained utility function s(y) will be maximized when its derivative is 0 and
its second derivative is negative; however, s(y) is also maximized when the square of√

D − y
2

5
√

y is maximized. Instead of finding a more complicated derivative, we can
differentiate f = (D − y

2)(y 2
5 ) = Dy

2
5 − (1

2)y 7
5 to find the optimal combination of apples

and bananas.
f ′ = D(2

5)y− 3
5 − 7

10y
2
5

f ′′ = D(− 6
25)y− 8

5 − (14
50)y− 3

5

The second derivative f ′′ will be negative for all positive values of D and y, so function
is concave down everywhere and any point at which f ′ = 0 will be a maximum.
Letting the first derivative be equal zero we get

D(2
5)y− 3

5 = ( 7
10)y 2

5

D(2
5) = ( 7

10)y → (4
7)D = y

Now that we have an optimal value of y in terms of D we can solve for the optimal value
of x.

D = x + y

2 → D = x + (2
7)D
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x = (5
7)D

52a. Find the marginal rate of substitution for Zoey’s and Sydney’s utility functions.
Solution:a) Zoey’s utility function is z(x, y) = √xy. Then the marginal utility of x is
zx = (y

2)(xy)− 1
2 . The marginal utility of y is zy = (x

2 )(xy)− 1
2 .

Sydney’s utility function is s(x, y) = 15
√

x(y 1
5 ). The marginal utility of x is sx =

(15
2 )y 1

5 x−
1
2 . The marginal utility of y is sy = 3x

1
2 y−

4
5 .

31.Extend the result of Clairaut’s Theorem to show that under appropriate continuity
assumptions, we have fxyx = fxxy = fyxx.
Solution: Suppose we have a continuous function f for which all first, second, and third
order partial derivatives are continuous. By Clairaut’s Theorem, fxy = fyx. If we differ-
entiate both sides of this equality with respect to x we get

d

dx
fxy = d

dx
fyx

fxyx = fyxx (1)
Now let g = fx. Because all second and third order partial derivatives of f are continuous,
all first and second order partial derivatives of g are continuous. This continuity is
sufficient for us to apply Clairaut’s Theorem to g and find gxy = gyx. If we substitute fx

in for g we have
gxy = gyx → fxxy = fxyx (2).

Combinging results (1) and (2) we have

fxxy = fxyx = fyxx.

33.Consider the function of two variables defined by f(x, y) = 2xy x2−y2

x2+y2 for (x, y) 6= (0, 0)
with f(0, 0) = 0. Using the definition of partial derivatives, determine fx(0, 0) and
fy(0, 0). Show that fxy(0, 0) = −2 but fyx(0, 0) = +2 so the mixed partials are not equal
at the origin. Explain why Clairaut’s Theorem does not apply to this function. .
Solution: The definition of the partial derivative with respect to x of f(x, y) is

fx(x, y) = lim
h→0

f(x + h, y)− f(x, y)
h

.

Examining this limit at the origin we find

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)
h

= lim
h→0

f(h, 0)
h

= 0,

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)
h

= lim
h→0

f(0, h)
h

= 0.

To evaluate the mixed partial derivatives at the origin we first need to find general
expressions for fx and fy at any arbitrary point (x, y). Applying the Product Rule to the
numerator and the Quotient Rule to the entire expression we can solve for the general
partial derivatives.

fx = 2y(x4 + 4x2y2 − y4)
(x2 + y2)2
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fy = 2x(x4 − 4x2y2 − y4

(x2 + y2)2

2

Now we can apply the definition of the partial derivative at the origin to find the values
of the mixed partials at the origin.

fxy(0, 0) = lim
h→0

( 1
h

)(fx(0, 0 + h)− fx(0, 0)) = lim
h→0

( 1
h

)(fx(0, h))

fxy(0, 0) = lim
h→0

−2h5

h5 = −2

Differentiating fy with respect to x we have

fyx(0, 0) = lim
h→0

( 1
h

)(fy(0 + h, 0)− fx(0, 0)) = lim
h→0

( 1
h

)(fx(h, 0))

fyx(0, 0) = lim
h→0

2h5

h5 = 2.

Thus the mixed partial derivatives are not equivalent at the origin. Applying Clairaut’s
Theorem to a function f requires f , the first, and the second order partial derivatives to all
be continuous over the interval of inspection. Neither of the first order partial derivatives
of f are continuous at the origin, so Clairaut’s Theorem can’t guarantee anything about
the mixed partial derivatives.


