
MATH 223: Multivariable Calculus

Class 34: May 11, 2022



Notes on Assignment 32
Assignment 33

Last Term’s Final Exam



Mathematician of the Week

Edna Ernestine Kramer Lassar
May 11, 1902 – July 9, 1984



Announcements
Independent Projects Due Monday

Course Response Forms: Monday
Bring Your Laptop To Class

Final Exam:
Thursday, May 19: 2 to 5 PM

MATH 223 A: Here
MATH 223 B: 317 Munroe



Gauss’s Theorem aka Divergence Theorem
Planar Version:

∫
D div F =

∫
γ F · N

Three Dimensional Version
∂R is 2-dimensional surface surrounding 3-dimensional region R∫

R div F =
∫
∂R F ·N



Gauss’s Theorem

The Setting

R Bounded Solid Region in R3

∂R Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R

F Continuously Differentiable Vector Field in R

The Theorem

In this setting

∫
R

div F dV =

∫
∂R

F · dS



Example: F = (ey cos z,
√
x3 + 1 sin z, x2 + y2 + 3)

div F = 0 + 0 + 0 = 0
so
∫
R div F = 0 for any region in R3.

Let S be graph of z = (1− x2 − y2)e1−x2−3y2) for z ≥ 0
oriented by outward pointing unit normal vector.

Finding
∫
S F · dσ directly is impossible.



A Clever Way To Find
∫
S F · dσ indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S ∪ S′ where S′ is the disk of radius 1
(x2 + y2 = 1) in z = 0 plane.

Then
∫
∂r F =

∫
S∪S′ F =

∫
S F+

∫
S′ F

But by Gauss’s Theorem, this integral equals 0.
Hence

∫
S F = −

∫
S′ F

Now∫
S′ F = −

∫
(−−,−−, x2+y2+3)·(0, 0,−1) = −

∫
x2+y2+3dxdy

= −
∫ 2π
θ=0

∫ 1
r=0(r

2 + 3) r dr dθ = −7
2π.

Thus
∫
S F = 7

2π



Today:

Stokes’s Theorem∫
S

curl F =

∫
∂S

F

S is a Surface in R3



Vector Field Theorems
Plane

F : R2 → R2

D is 2-dimensional
C = ∂D is 1-dimensional

Green – Ostrogradski Gauss (Divergence)∫
D curl F =

∫
C F

∫
D div F =

∫
C F ·N



Positive Orientation

Setting: Let D be a plane region bounded by a curve traced out in
a counterclockwise direction by some parametrization

h : R1 → R2 for a ≤ t ≤ b.

Let S = g(D) be the image of D where g : R2 → R3 so that S is
a 2-dimensional surface in 3-space whose border γ corresponds to

the boundary of D.

We say that γ inherits the positive orientation with respect to S.
The composition g(h(t)) describes the border of S. Denote by ∂S

the positively oriented border of S.



Vector Field in R3: F(x) = (F (x), G(x), H(x))) where each of
F,G,H is a real-valued function of 3 variables.

Curl F(x) = (Hy(x)−Gz(x), Fz(x)−Hx(x), Gx(x)− Fy(x))

Stokes’s Theorem: Let S be a piece of smooth surface in R3,
parametrized by a twice continuously differentiable function g.
Assume that D, the parameter domain of g, is a finite union of
simple regions bounded by a piecewise smooth curve. If F is a

continuously differentiable vector field defined on S, then∫
S

Curl F · dS =

∫
∂S
F · dx

where ∂S is the positively oriented border of S.

[Note: If F = (F,G, 0) where F and F are independent of z, then
Stokes’s Theorem reduces to Green’s Theorem. Thus Stokes

generalizes Green.]



Example: Verify Stokes Theorem where
F(x, y, z) = (z, x, y)

S : g(u, v) = (u, v, 1− u2 − v2), u2 + v2 ≤ 1.



Example: Verify Stokes Theorem where
F(x, y, z) = (z, x, y)

S : g(u, v) = (u, v, 1− u2 − v2), u2 + v2 ≤ 1.
Parametrize ∂S by (cos t, sin t), 0 ≤ t ≤ 2π.

Then g(u, v) = (cos t, sin t, 0) and g′(u, v) = (− sin t, cos t, 0)
F (g(u, v)) = (1− u2 − v2, u, v) = (0, cos t, sin t)

F (g(u, v)) · g′(u, v) = (0, cos t, sin t) · (− sin t, cos t, 0) = cos2 t

∫
∂S

F =

∫ 2π

0
cos2 tdt =

∫ 2π

0

1 + cos 2t

2
dt =

1

2

[
t+

sin 2t

2

]2π
0

= π



Now
∫
S curl F =

∫
S curl (z, x, y)

curl F = det

 i j k
∂
∂x

∂
∂y

∂
∂z

z x y

 = (1− 0,−(0− 1), 1− 0) = (1, 1, 1)

Thus we want to integrate (1,1,1) over S.
Here g(u, v) = (u, v, 1− u2 − v2)

so gu = (1, 0,−2u), gv = (0, 1,−2v)
and gu × gv = (2u, 2v, 1) [work it out]

∫
S

curl F =

∫∫
D
(1, 1, 1) ·(2u, 2v, 1)dudv =

∫∫
D
2u+2v+1dudv

which equals (using polar coordinates)∫ r=1

r=0

∫ θ=2π

θ=0
(2r cos θ + 2r sin θ + 1) r dr dθ



∫
S

curl F =

∫∫
D
(1, 1, 1) ·(2u, 2v, 1)dudv =

∫∫
D
2u+2v+1dudv

which equals (using polar coordinates)∫ r=1

r=0

∫ θ=2π

θ=0
(2r cos θ + 2r sin θ + 1) r dr dθ

=

∫ r=1

r=0

[
2r2 sin θ − 2r2 cos θ + rθ

]θ=2π

θ=0
dr

=

∫ r=1

r=0
2πr dr = 2π

[
r2

2

]r=1

r=0

= π


