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Announcements

Independent Projects Due Monday

Course Response Forms: Monday
Bring Your Laptop To Class

Final Exam:
Thursday, May 19: 2 to 5 PM
MATH 223 A: Here
MATH 223 B: 317 Munroe



Gauss’s Theorem aka Divergence Theorem
Planar Version: [, div F = f,y F-N

Three Dimensional Version
OR is 2-dimensional surface surrounding 3-dimensional region R

[ dvF= [, F-N



OR

Gauss’s Theorem
The Setting

Bounded Solid Region in R?

Finitely Many Piecewise Smooth, Closed Orientable Surfaces
Oriented by Unit Normals Pointed away from R
Continuously Differentiable Vector Field in R

The Theorem

In this setting / div FdV = / F-dS
OR

R



Example: F = (e¥cos z, Va3 + 1sinz, 22 + y% + 3)
dvF=0+0+4+0=0
so fR div F = 0 for any region in R3.
Let S be graph of z = (1 — 22 — y2)el =" =3¥") for z > 0
oriented by outward pointing unit normal vector.

Finding fS F - do directly is impossible.



A Clever Way To Find fS F - do indirectly.

Cap the Surface with a Disk so New Surface Bounds a
3-Dimensional Region

Form closed surface S U S’ where S’ is the disk of radius 1
(22 4+ 9% =1) in z =0 plane.

Then [, F= [o o F=[¢F+ [oF
But by Gauss’s Theorem, this integral equals 0.

Hence fSF = —fS, F

Now
JgF=—[(— —— 22 4+y%+3)-(0,0,-1) = — [ 2 +y>+3dzdy
= — [ +3)rdrd9——§7r
Thus J¢F=1Ir



Today:

Stokes’'s Theorem

/curIF:/ F
S 0S

S is a Surface in R?



Vector Field Theorems
Plane
F:R%2 5 R2

D is 2-dimensional
C = 9D is 1-dimensional

Green — Ostrogradski  Gauss (Divergence)
[yl F= [, F [ dvF=[,F N



Positive Orientation

Setting: Let D be a plane region bounded by a curve traced out in
a counterclockwise direction by some parametrization
h:RY— R%fora<t<hb.

Let S = g(D) be the image of D where g : R? — R3 so that S is
a 2-dimensional surface in 3-space whose border + corresponds to
the boundary of D.

We say that y inherits the positive orientation with respect to S.
The composition g(h(t)) describes the border of S. Denote by 9.5
the positively oriented border of S.



Vector Field in R3: F(x) = (F(x),G(x), H(x))) where each of
F,G, H is a real-valued function of 3 variables.

Curl F(x) = (Hy(x) — G2(x), F.(x) — He(x), Ge(x) — Fy(x))

Stokes’s Theorem: Let S be a piece of smooth surface in R?,
parametrized by a twice continuously differentiable function g.
Assume that D, the parameter domain of g, is a finite union of
simple regions bounded by a piecewise smooth curve. If F is a
continuously differentiable vector field defined on S, then

/CurlF-dS—/ F-dx
S oS

where 95 is the positively oriented border of S.

[Note: If F = (F,G,0) where F' and F' are independent of z, then
Stokes's Theorem reduces to Green's Theorem. Thus Stokes
generalizes Green]



Example: Verify Stokes Theorem where

F(xvyv z) - (vaay)
S g(u,v) = (u,v,1 —u? —v?),u? + 02 < 1.




Example: Verify Stokes Theorem where
F(z,y,2) = (2,2,y)
S :g(u,v) = (u,v,1 —u? —v?),u? + 0% < 1.
Parametrize 05 by (cost,sint),0 <t < 2.
Then g(u,v) = (cost,sint,0) and ¢'(u,v) = (—sint, cost,0)
F (g(u,v)) = (1 — u® — v?,u,v) = (0,cost,sint)

F (g(u,v)) - ¢'(u,v) = (0,cost,sint) - (—sint,cost,0) = cos® t

27 27 . 2T
1 2t 1 2t
/ F:/ cos2tdt:/ 1Fcosst dtz[t—FSln ] =7
85 0 0 2 2 2 |y




Now [g curl F = [ curl (z,z,y)

i
cardF=det | & & £ |=(1-0-(0-1),1-0)=(1,11)
z x oy

Thus we want to integrate (1,1,1) over S.
Here g(u,v) = (u,v,1 — u? —v?)
so gy, = (1,0, —2u), g, = (0,1, —2v)
and g, X gy = (2u,2v,1) [work it out]

/ curl F = // (1,1,1)- 2u,2v,1)dudv:// 2u+2v+1dudv
D

which equals (using polar coordinates)

0=2m
/ / (2r cos@ + 2rsin@ + 1) r dr df
r 0



/ curIF:// (1,1,1)-(2u,20,1)dudv=// 2u+2v+ldudv
5 D D

which equals (using polar coordinates)

0=2m
/ / (2r cos@ + 2rsin@ + 1) r dr df
r 0

:/ [2r sin @ — 2r2 cos@—i—r@}e T dr
r=0



