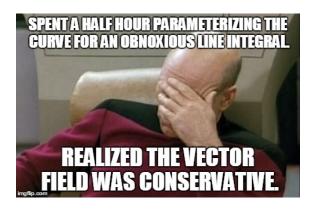
MATH 223: Multivariable Calculus



Class 32: May 6, 2022

Notes on Assignment 30
Assignment 31
Conservative Vector Fields

Announcements

Today: More on Conservative Vector Fields Introduction to Surface Integrals

Conservative Vector Fields

F is continuously differentiable vector field in the plane

 $\mathbf{F}:\mathbb{R}^2\to\mathbb{R}^2$ with $\mathbf{F}(x,y)=(F(x,y),G(x,y))$ where F and G are each real-valued functions.

Here curl ${\bf F}$ is a real-valued function G_x-F_y Green's Theorem: $\int_D {
m curl} \ {\bf F}=\int_\gamma {\bf F}$

Three Important Properties of Vector Fields

- **A**: **F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f: \mathbb{R}^2 \to \mathbb{R}^1$
- **B**: **F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- C: **F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT

A implies B

- **A**: **F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$
- **B**: **F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$

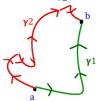
Suppose **F** is Conservative Then
$$(F,G)=\mathbf{F}=\nabla f=(f_x,f_y)$$
 so $f_x=F$ and $f_y=G$ Thus $G_x=f_{yx}$ and $F_y=f_{xy}$ so curl $\mathbf{F}=G_x-F_y=f_{yx}-f_{xy}=0$

by equality of mixed partials.

B implies C will follow from Green's Theorem

- **B**: **F** is **IRROTATIONAL** means curl $\mathbf{F} = 0$
- C: **F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

Let **a** and **b** are any points in the plane and γ_1 and γ_2 two paths from **a** to **b**. Then $-\gamma_2$ runs from **b** to **a**



and $\gamma=\gamma_1-\gamma_2$ is a loop that begins and ends at **a** Let D be the enclosed region.

By Green's Theorem
$$\int_{\gamma}\mathbf{F}=\int\!\!\int_{D}\,\operatorname{curl}\,\mathbf{F}=\int\!\!\int_{D}0=0$$
 Thus $0=\int_{\gamma}\mathbf{F}=\int_{\gamma_{1}-\gamma_{2}}\mathbf{F}=\int_{\gamma_{1}}\mathbf{F}-\int_{\gamma_{2}}\mathbf{F}$ Hence $\int_{\gamma_{2}}\mathbf{F}=\int_{\gamma_{1}}\mathbf{F}$

C implies A (New)

C: **F** is **PATH INDEPENDENT** means $\int_{\gamma_1} \mathbf{F} = \int_{\gamma_2} \mathbf{F}$ for any paths γ_1 and γ_2 from **a** to **b** where **a** and **b** are any points in the plane.

A: **F** is **CONSERVATIVE** means $\mathbf{F} = \nabla f$ for some $f : \mathbb{R}^2 \to \mathbb{R}^1$

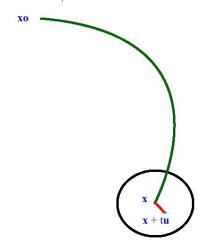
Idea:

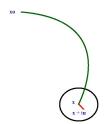
Fix \mathbf{x}_0 in \mathbb{R}^n and let \mathbf{x} be arbitrary point in \mathbb{R}^n . Let γ be a curve from \mathbf{x}_0 to \mathbf{x} . Then $\int_{\gamma} \mathbf{F}$ will be a function of \mathbf{x} whose gradient is \mathbf{F} .

Theorem Let ${\bf F}$ be a continuous vector field defined in a polygonally connected open set D of ${\mathbb R}^n$. If the line integral $\int_\gamma {\bf F}$ is independent of piecewise smooth path γ from ${\bf x}_0$ to ${\bf x}$ in D, then if $f({\bf x})=\int_\gamma {\bf F}$, it is true that $\nabla f={\bf F}$.

Let's build the potential function in a different way using the theorem with $\mathbf{F}(x,y) = (3x^2 + y, e^y + x)$ Pick $\mathbf{x}_0 = (0,0)$ and let $\mathbf{x} = (x,y)$ be an arbitrary point. Choose the straight line between them as the path γ with parametrization q(t) = (xt, yt), 0 < t < 1 so q'(t) = (x, y)Then $\mathbf{F}(q(t)) = F(xt, yt) = (3x^2t^2 + yt, e^{yt} + xt)$ so $\mathbf{F}(q(t)) \cdot q'(t) = (3x^2t^2 + yt, e^{yt} + xt) \cdot (x, y)$ $=3x^3t^2 + xyt + ye^{yt} + xyt = 3x^3t^2 + 2xyt + ye^{yt}$ Now $\int_{\Sigma} \mathbf{F} = \int_{0}^{1} (3x^{3}t^{2} + 2xyt + ye^{yt}) dt$ $= \left[x^3t^3 + xyt^2 + e^{yt}\right]_{t=0}^{t=1}$ $=(x^3+xy+e^y)-(0+0+1)=x^3+xy+e^y-1$

Theorem Let ${\bf F}$ be a continuous vector field defined in a polygonally connected open set D of ${\mathbb R}^n$. If the line integral $\int_\gamma {\bf F}$ is independent of piecewise smooth path γ from ${\bf x}_0$ to ${\bf x}$ in D, then if $f({\bf x})=\int_\gamma {\bf F}$, it is true that $\nabla f={\bf F}$.





Let g be parametrization of line segment from ${\bf x}$ to ${\bf x}+t{\bf u}$ so $g(v)={\bf x}+v{\bf u}, 0\leq v\leq t$ and $g'(v)={\bf u}$

$$\begin{aligned} f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x}) &= \int_{\mathbf{x}_0}^{\mathbf{x} + t\mathbf{u}} \mathbf{F} - \int_{\mathbf{x}_0}^{\mathbf{x}} \mathbf{F} = \int_{\mathbf{x}}^{\mathbf{x} + t\mathbf{u}} \mathbf{F}(\mathbf{x} + v\mathbf{u}) \\ &= \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \ dv \end{aligned}$$

To find $\frac{\partial f}{\partial x_j}(\mathbf{x})$, let **u** be unit vector $\mathbf{e}_j = (0, 0, \dots, 1, 0, 0, \dots)$ in the jth direction.

$$\frac{\partial f}{\partial x_j}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{u}) - f(\mathbf{x})}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{u}) \cdot \mathbf{u} \, dv$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t \mathbf{F}(\mathbf{x} + v\mathbf{e}_j) \cdot \mathbf{e}_j \, dv$$

But this last expression is the derivative of the integral with respect to t evaluated at t=0 which is $\mathbf{F}\cdot\mathbf{e}_j=\mathbf{F}_j(\mathbf{x})$ (Using Fundamental Theorem of Calculus)

Symmetry of Jacobian Matrix for Conservative Vector Field

Let $\mathbf{F} = (F(x,y),G(x,y))$ be a conservative vector field in the plane which we can recognized by $G_x = F_y$

$$\mathbf{F'} = \begin{pmatrix} F_x & F_y \\ G_x & G_y \end{pmatrix}$$
 Note symmetry of Jacobian Matrix.

How do things generalize to higher dimensions?

Example:
$$\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$$
 by

$$\begin{split} F(x,y,z) &= (yz^2 + \sin y + 3x^2, xz^2 + x\cos y + e^z, 2xyz + ye^z + \frac{1}{z}) \\ \mathbf{F'} &= \begin{pmatrix} 6x & z^2 + \cos y & 2yz \\ z^2 + \cos y & -x\sin y & 2xz + e^z \\ 2yz & 2xz + e^z & 2xy + ye^z - \frac{1}{z^2} \end{pmatrix} \\ &\quad \text{To find } f \text{ so that } \nabla f = \mathbf{F} \text{:} \end{split}$$

Step 1: integrate first component of **F** with respect to x: $f(x, y, z) = yz^2x + x \sin y + x^3 + G(y, z)$

Step 2: Take derivative of trial f respect to y and set equal to second component of \mathbf{F} :

$$\begin{split} f_y &= z^2x + x\cos y + 0 + G_y(y,z) \text{ must } = xz^2 + x\cos y + e^z \\ \text{Need } G_y(y,z) &= e^z \text{ so choose } G(y,z) = e^zy + H(z) \\ \text{So far, } f(x,y,z) &= yz^2x + x\sin y + x^3 + e^zy + H(z) \end{split}$$

Step 3 :Take derivative of trial f respect to z and set equal to third component of \mathbf{F} ;

$$f_z(x,y,z) = 2xyz + 0 + 0 + e^zy + H'(z) \text{ must } = 2xyz + e^zy + \frac{1}{z}$$
 Need $H'(z) = \frac{1}{z}$ so choose $H(x) = \ln|z| + C$

$$f(x, y, z) = f(x, y, z) = yz^{2}x + x\sin y + x^{3} + e^{z}y + \ln|z| + C$$

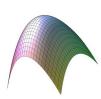
Theorem If F is a conservative vector field on \mathbb{R}^n and is continuously differentiable, then the Jacobian matrix is symmetric.

Proof: Equality of mixed partials.

Theorem Suppose F is a continuously differentiable vector field on \mathbb{R}^n whose Jacobian matrix is symmetric. Then F is conservative.

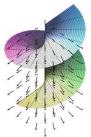
<u>Theorem</u> If F is a conservative vector field on \mathbb{R}^n and is continuously differentiable, then the Jacobian matrix is symmetric.

Integrating Vector Fields Over Surfaces



$$g(u,v) = [u, v, -2u^2 - 3v^2]$$
 $g(u,v) = [u\cos v, u\sin v, v]$

$$g(u, v) = [u\cos v, u\sin v, v]$$



Smooth Curve γ	Smooth Surface S
$g: I \text{ in } \mathbb{R}^1 o \mathbb{R}^n$	$g:D$ in $\mathbb{R}^2 o \mathbb{R}^3$
$\text{Length} = \int_{I} g'(t) dt$	Area $\sigma(S) = \iint_D g_u imes g_v du dv$
$\begin{aligned} Mass &= \int_I \mu(g(t)) g'(t) dt \\ Line Integral: \end{aligned}$	Mass $= \iint_D \mu d\sigma$ Surface Integral
Line integral.	Surface Integral
$\int_{\gamma} \mathbf{F} = \int_{I} \mathbf{F}(g(t)) \cdot g'(t) dt$	$\iint_{S} \mathbf{F} = \iint_{D} \mathbf{F}(g(u, v)) \cdot (g_{u} \times g_{v})$

Surface Integral

Let g be a function from an interval $[t_0,t_1]$ into \mathbb{R}^n with image γ and mu density at g(t).

Then Mass of Wire
$$=\int_{t_0}^{t_1} \mu(t) |g'(t)| \ dt$$

If $\mu \equiv 1$, then mass = length of curve $\int_{t_0}^{t_1} |g'(t)| \, dt$ Generalize To Surfaces

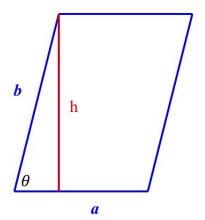
Let D be region in plane and $g:D\to\mathbb{R}^3$ with $g(u,v)=(g_1,g_2,g_3)$ where each component function g_i is continuously differentiable.

There are two natural tangent vectors: $g_u = \frac{\partial g}{\partial u}$ and $g_v = \frac{\partial g}{\partial v}$, These determine a tangent plane.

S is a **Smooth Surface** if these two vectors are linearly independent.

Note that $\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}$ is normal to the plane with $|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}| = |\frac{\partial g}{\partial u}||\frac{\partial g}{\partial v}|\sin\theta$

= Area of Parallelogram Spanned by the Vectors



$$\begin{split} \sin\theta &= \frac{h}{|\mathbf{b}|} \text{ so } h = |\mathbf{b}| \sin\theta \\ \text{Area of Parallelogram} &= (\text{Base})(\text{Height}) = |\mathbf{a}||\mathbf{b}| \sin\theta \\ \mathbf{a} &= g_u, \mathbf{b} = g_v \\ |g_u \times g_v| &= |g_u||g_v| \sin\theta \end{split}$$

Surface Area

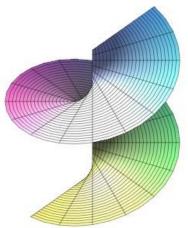
$$\sigma(S) = \iint_D \left| \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \right| du dv = \iint_D \left| g_u \times g_v \right| du dv$$

If
$$\mu(g(u,v))$$
 is density, then mass =
$$\iint_D \mu \ d\sigma = \iint_D \mu(g(u,v)) |g_u \times g_v| \ du dv$$

Plotting Parametrized Surface in Maple: plot3d([g1(u,v),g2(u,v),g3(u,v)],u=...,v=...)

Area of a Spiral Ramp

 $g(u,v) = (u\cos v, u\sin v, v), 0 \le u \le 1, 0 \le v \le 3\pi$



Area of a Spiral Ramp

$$\begin{split} g(u,v) &= (u\cos v, u\sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 3\pi \\ g_u &= (\cos v, \sin v, 0), g_v = (-u\sin v, u\cos v, 1) \\ g_u &\times g_v = \text{ det } \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 0 \\ -u\sin v & u\cos v & 1 \end{vmatrix} \\ &= \left(\begin{vmatrix} \sin v & 0 \\ u\cos v & 1 \end{vmatrix}, - \begin{vmatrix} \cos v & 0 \\ -u\sin v & 1 \end{vmatrix}, \begin{vmatrix} \cos v & \sin v \\ -u\sin v & u\cos v \end{vmatrix} \right) \\ &= (\sin v, -\cos v, u) \\ \text{Then } |g_u &\times g_v| = \sqrt{\sin^2 v + \cos^2 v + u^2} = \sqrt{1 + u^2} \\ \text{Area} &= \int_{v=0}^{v=3\pi} \int_{u=0}^{1} \sqrt{1 + u^2} \, du \, dv \\ \text{If density is } \mu(\mathbf{x}) = u, \text{ then } \\ \text{Mass} &= \\ \int_{v=0}^{v=3\pi} \int_{u=0}^{u=1} u(1 + u^2)^{1/2} \, du \, dv = \int_{v=0}^{v=3\pi} \left[\frac{1}{3} (1 + u^2)^{3/2} \right]_0^1 \, dv \\ &= \int_{v=0}^{v=3\pi} \frac{1}{3} [2^{3/2} - 1^{3/2}] \, dv = 3\pi \frac{1}{3} [2^{3/2} - 1] = \pi [2^{3/2} - 1] \end{split}$$