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Class 31: May 4, 2022



Notes on Assignment 29
Assignment 30
Green'sTheorem

Notes on Exam 32

No Office Hours This Friday



Mathematician of the Week
Samuel Giuseppe Vito Volterra




Announcements

Today
More Green’s Theorem
Conservative Vector Fields



Divergence of a Vector Field
Definition div F = trace of F’, the Jacobi Matrix
In general, div F is a real -valued function of n
variables.



Curl of a Vector Field
Curl measures local tendency of a vector field and its flow lines to
circulate around some axis.
The curl of a vector field is itself a vector field.
Setting; F : R? — R3 is our vector field
F = (Fy, Fy, F3) so F(z,yz) = (Fi(z,y, 2), Fa(x,y, 2), F3(x,y, 2))
OFy _ OF, OF _ OFy 0F, _ OF

Formal Definition: curl F = G T 0 9 T e o~ oy

Mnemonic Device:

i j k.
curl F = det % % %
Fi Fy F3
Expand along first row:
_|m #=ill% #|iL|m %k
curIF—PZ F3I_F1 FSJ e




Scalar Curl for Vector Fields in Plane
F = (F,G,0) whereF(z,y) and G(z,y)are functions only of = and
Y.
Then curl F = (0,0,G, — F)

Note: Curl and Conservative Vector Field
Suppose F = (F, G,0) is gradient field with F = V f.
Then F' = f, and G = f,

In this case, Curl F = (0,0, fyz — fzy) = (0,0,0)
by Clairault’s Theorem on Equality of Mixed Partials.



Green’s Theorem in the Plane

feon-

D is bounded plane region.
C = v is piecewise smooth boundary of D
F' and G are continuously differentiable functions defined on D
Then

/ / F,)dzdy — L (F,G)

where 7y is parametrized so it is traced once with D on the left.



Using Green’s Theorem
(1) Compute [ [, curl F by using fﬂ/ F

(2) Compute f7 F by using [/, curl F



Using Green’s Theorem
Compute fﬂ/ F by using [[, curl F

Example Let F(z,y) = (% cos ¥, =73 cos £)

v
Compute [ Fas [[;(Gs — Fy)

Here G; = (—7z)x cos § + —75(cos e
= hcosE — &(—sinf)(})
Z—y% cos% + y%(sin%)
Similarly, F,, = —y% cos% + %(— sin%)(;—g)
:—y—g cos & + ;5(+sin )
So G, — I, = 0.

Hence f7 F=0
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George Green Mikhail Ostrogradsky
1793 — 1841 1801 — 1861
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IPPLICATION

MATHEMATICAL ANALYSIS TO THE THEORIES OF

ELECTRICITY AND MAGNETISM.



Gauss’ Theorem

Green: // curIF—/F
D vy

If F = (F1, F») then curl F = %i; _ %}

Apply Green's Theorem to H = (-G, F') where F = (F, G)

f7 H=[]p curl (Fo — (=Gy)) = [[p(Fa + Gy) = [[}, divF

On the other hand, [ H = PH-g = ["(~G,F)- (g1, 99)

b oo b ’ ’ b ’ ’
fa(_G F)-(91:99) = f/a _G;gl ‘,F FQQ,:/fa (}77 G) (92, —91)
Observe (927 —91) - (91,92) = 9192 — 9192 = 0
So (92, gl) is orthogonal to the tangent vector so it is a normal
vector N.

Thus [ H = ['(F,G) (93, —g) = [,(F,G) N = [F-N
vy

Putting everything together: // div F = /




Proof of Green’'s Theorem in an Elementary Case
Case : Boundary of D is made up of the graphs of two functions
defined on interval [a, b].

Y2

P

Q-
O~ ——

Ingredients:
Vector Field F = (F,G) = (F,0) 4+ (0,G)
~1 = image of g;
v = image of go
Need to show [[,[G, — Fy] = f F= f [(F,0)+ (0,G)]
Will show [, Fy—fW(F 0)



Need to show [[,[G, — Fy] = f7 F= fw[(F’ 0) + (0,G)]

Will show [, —Fy = fv(F’ 0)
We tackle the line integral first. Start with v,
Y2

We can parametrize 1 by a function g(t) = (¢, ¢(t)) fora <t <b
Then ¢'(t) = (1,6,(1))
Now (F,0)-¢(t) = (F,0) - (1,¢1(t)) = F = F(t, ¢1(1))

so [ (F,0) = [} F(t, ¢r(t)) dt



Now we take up s

<

1 1
I T
a b

Consider Parametrization of v2 as g(t) = (¢, ¢2(t)),a <t < b.
This would actually traces out 2 in the opposite direction. It is
the parametrlzatlon of —v,

Again we have ¢'(t) = (1 ¢2) and (F,0) - ¢'(t) = F(t, ¢2(t))
SO f*’m 0) = fa F(t, ¢o(t)).
Thus [ (F,0) = — fw = — [P F(t, (1))

Finally, [ (F,0) = [, (F.0)+ [, (F.0)
= [PF(t,61(t) dt — [P F(t, ¢a(t)) dt

b
/ (F,0) = / F(t,61(t)) — F(t, éo(t)) dt




Goal: Show [f, —Fy = [ (F,0)
So far: [ (F,0) = [} F(t,¢1(t)) — F(t, ¢a(t)) dt

Now turn to the curl part:
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Conservative Vector Fields
F is continuously differentiable vector field in the plane
F:R? — R? with F(z,y) = (F(x,y),G(z,y)) where F and G are
each real-valued functions.
Here curl F is a real-valued function G, — F},
Green's Theorem: [}, curl F= [ F

Three Important Properties of Vector Fields
A: F is CONSERVATIVE means F = Vf for some f : R? — R!
B: F is IRROTATIONAL means curl F =0

C: Fis PATH INDEPENDENT means fw F= fvz F for any
paths v, and 2 from a to b where a and b are any points in
the plane.

Major Goal: Show THESE PROPERTIES ARE EQUIVALENT



A implies B
A F is CONSERVATIVEmeans F = Vf for some f : R? — R!
B F is IRROTATIONAL means curl F =0

Suppose F is Conservative
Then (F,G) =F=Vf=(fsfy)s0o fo =Fand f, =G
Then G, = fyz and Fyy = foy
socurl F =Gy — Fy = fyo — fzy =0
by equality of mixed partials.



B implies C will follow from Green's Theorem
B F is IRROTATIONAL means curl F =0
C F is PATH INDEPENDENT means fw F= fw F for any
paths 71 and = from a to b where a and b are any points in
the plane.
Let a and b are any points in the plane and 1 and 75 two paths
from a to b. Then —~; runs from b to a

¥2 b

vl

and v =71 — 72 is a loop that begins and ends at a
Let D be= the enclosed region.
By Green's Theorem f F= ffD curl F= [[,0=0
Thus():f F= fﬂﬂ . _wa fWF

Hence [ F= [ F



C implies A
C Fis PATH INDEPENDENT means [ F = [ F for any
" oP)

paths 1 and o from a to b where a and b are any points in
the plane.

A F is CONSERVATIVE means F = Vf for some f:R? — R!



