
MATH 223: Multivariable Calculus

Class 25: April 18, 2022



Notes on Assignment 23
Assignment 24

Jacobi’s Theorem on Change of Variable



Announcements

Review Improper Integrals:∫ ∞
1

1

xn
dx

Description Due Today



Mathematician of the Week

Conel Hugh Alexander

April 19, 1909 – February 15, 1974
Cryptanalyst and Chess Champion

Biography

G. H. Hardy: ”He was the only genuine mathematician I knew who
did not become a professional mathematician”

https://mathshistory.st-andrews.ac.uk/Biographies/Alexander_Hugh/


This Week:
Change of Variable

Improper Integrals
Application to Probability



Change of Variable aka Method of Substitution
A common technique in the evaluation of integrals is to make a

change of variable in the hopes of simplifying the problem of
determining an antiderivatives

Example: Evaluate

∫ x=2

x=0

2x

1 + x2
dx

Let u = 1 + x2 x = 0→ u = 1 + 02 = 1
The du = 2xdx x = 2→ u = 1 + 22 = 5

∫ x=2

x=0

2x

1 + x2
dx =

∫ u=5

u=1

1

u
du = ln 5− ln 1 = ln 5



∫ x=2

x=0

2x

1 + x2
dx =

∫ u=5

u=1

1

u
du

Let’s look at what is happening geometrically:

Not only does the function change, but also the region of
integration.

The region of integration changes from an interval of length 2 to
an interval of length 4.

The interval also moves to a new location.



In computing mutltiple integrals, the corresponding change in the
region may be more complicated.

By a change of variable, we will mean a vector function T from
Rn to Rn. It is convenient to use different letters to denote the

spaces; e.g, T : Un → Rn



Carl Gustav Jacob Jacobi
December 10, 1804 – February 18, 1851

For further information see his Biography

https://mathshistory.st-andrews.ac.uk/Biographies/Jacobi/


Jacobi’s Theorem
Let R be a set in Un and T (R) its image under T ; that is,

T (R) = {T (~u) : ~u is in R}
Suppose f : Rn → R1 is a real-valued function.

Then, under suitable conditions,∫
T (R)

f (~x)dV~x =

∫
R
f (T (~u))|detT ′(~u)|dV~u

I T is continuous differentiable

I Boundary of R is finitely many smooth curves

I T is one-to-one on interior of R
I The Jacobian Determinant det T ′ is non zero on interior of R.

I The function f is bounded and continuous on T (R)



∫
T (R)

f (~x)dV~x =

∫
R
f (T (~u)|detT ′(~u))|dV~u

In our example: u = 1 + x2 so x =
√
u − 1

Thus T (u) =
√
u − 1 = (u − 1)1/2 so

T ′(u) = 1
2(u − 1)−1/2 = 1

2
√
u−1∫ 2

0
2x

1+x2
dx =

∫
T (R) f (~x)dV~x =

∫ 5
1 f (T (u)|detT ′(u)|du

Now f (T (~u) =
2T (u)

1 + (T (u))2
=

2
√
u − 1

1 + u − 1
=

2
√
u − 1

u

detT ′(u) =

∣∣∣∣ 1

2
√
u − 1

∣∣∣∣ =
1

2
√
u − 1

so f (T (~u)detT ′(u) =
1

u

so
∫ 2
0

2x
1+x2

dx =
∫ 5
1

2
√
u−1
u

1
2
√
u−1du =

∫ 5
1

1
udu



Example: Polar Coordinate Change of Variable

U2 T → R2

x = r cos θ
y = r sin θ

T (r , θ) = (r cos θ, r sin θ)

T ′ =

(
cos θ −r sin θ
sin θ r cos θ

)
so detT ′ = r cos2 θ + r sin2 θ = r

Thus
∫
T (R) f (x , y) dx dy =

∫
R f (r cos θ, r sin θ)r dr dθ



∫
T (R) f (x , y) dx dy =

∫
R f (r cos θ, r sin θ)r dr dθ

Example: f (x , y) = x2 + y2

T (R) = Half Disk = {(x , y) : −1 ≤ x ≤ 1, 0 ≤ y ≤
√

1− x2}

I =
∫ 1
−1
∫ √1−x2
0 (x2 + y2) dy dx

Describe Region in Polar Coordinates: 0 ≤ r ≤ 1, 0 ≤ θ ≤ π

I =
∫ π
θ=0

∫ 1
r=0 r

2 r dr dθ =
∫ π
θ=0

r4

4

∣∣∣∣1
0

dθ =
∫ π
θ=0

1
4dθ = π

4



Look At This Transformation More Closely

A : 0 ≤ r ≤ 1, θ = 0 B : r = 1, 0 ≤ θ ≤ π
x = r cos θ = r cos 0 = r x = r cos θ = cos θ
y = r sin θ = r sin 0 = 0 y = r sin θ = sin θ

C : 0 ≤ r ≤ 1, θ = π D : r = 0, 0 ≤ θ ≤ π
x = r cos θ = r cosπ = −r x = r cos θ = 0
y = r sin θ = r sinπ = 0 y = r sin θ = 0



Problem: Evaluate
∫∫∫

C

√
x2 + y2 + z2dV

where C is the ice cream cone
{(x , y , z) : x2 + y2 + z2 ≤ 1, x2 + y2 ≤ z2

3 , z ≥ 0}



Example: Spherical Coordinates

x = r sinφ cos θ T : (r , φ, θ)→ (x , y , z)
y = r sinφ sin θ det T ′ = r2 sinφ
z = r cosφ

Problem: Evaluate
∫∫∫

C

√
x2 + y2 + z2dV

where C is the ice cream cone
{(x , y , z) : x2 + y2 + z2 ≤ 1, x2 + y2 ≤ z2

3 , z ≥ 0}
z ≥ 0 implies φ ≤ π

2
x2 + y2 + z2 ≤ 1 implies r ≤ 1

x2 + y2 ≤ z2

3 implies r2 sin2 φ ≤ r2 cos2 φ
3

implies tan2 φ ≤ 1
3 implies φ ≤ π

6

∫ 2π

θ=0

∫ π/6

φ=0

∫ 1

r=0

√
r2r2 sinφ dr dφ dθ



Example: Evaluate
∫∫∫

D z2 dV where D is the interior of the

ellipsoid x2

4 + y2

16 + z2

9 = 1

STEP 1: Let u = x
2 , v = y

4 ,w = z
3 .

Equation of the ellipsoid becomes u2 + v2 + w2 = 1 (unit sphere)
So x = 2u, y = 4v , z = 3w gives T (u, v ,w) = (2u, 4v , 3w) and

T ′ =

2 0 0
0 4 0
0 0 3

 so det T ′ = 2× 4× 3 = 24

Thus
∫∫∫

D z2 =
∫∫∫

(3w)2(24) du dv dw = 216
∫∫∫

w2 du dv dw



STEP 2: Switch to Spherical Coordinates:
u = r sinφ cos θ, v = r sinφ sin θ,w = r cosφ

216
∫∫∫

w2 du dv dw = 216
∫∫∫

(r cosφ)2r2 sinφ dr dφ dθ

= 216
∫ 2π
θ=0

∫ π
φ=0

∫ 1
r=0 r

4 cos2 φ sinφ dr dφ dθ

= (216)(2π)
∫ π
φ=0

∫ 1
r=0 r

4 cos2 φ sinφ dr dφ

= (216)(2π)15
∫ π
φ=0 cos2 φ sinφ dφ

= (216)(2π)
5

[
− cos3 φ

3

]π
φ=0

= (216)(2π)
5

2
3 = 288π

5


