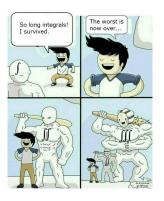
MATH 223: Multivariable Calculus



Class 23: April 13, 2022

Multiple Integrals Notes on Assignment 21 Assignment 22

Notes on Exam 2 (Median: 84)

Activity	Date	Approximate Weight
Exam 3	May 2	20%
Project	May 16	15%
Final Exam	May 19	25%

Announcements

Independent Projects

Choose Topic: Monday, April 18 Due: Monday, May 16

The Week Ahead:

Iterated Integral (Last Time)
Definition of Multiple Integrals
Properties of the Integral
Change of Variable

Instances of the Integral: I

The Classic Case

$$f:=\mathbb{R}^1 o \mathbb{R}^1$$

Definite Integral
$$\int_{a}^{b} f(x)dx$$

Indefinite Integral
$$\int f(x)dx$$

Instances of the Integral: II

Vector-Valued Functions of a Real Variable

$$f:=\mathbb{R}^1\to\mathbb{R}^n$$

$$f(t) = [f_1(t), f_2(t), ..., f_n(t)]$$

$$\int f(t) = \left[\int f_1(t), \int f_2(t), ..., \int f_n(t) \right]$$

Instances of the Integral: III

Line Integral = Path Integral (Will Study in Chapter 7)

$$\gamma$$
 is graph of $g: \mathbb{R}^1 \to \mathbb{R}^n, a \leq t \leq b$

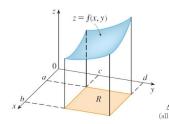
Force Field $F: \mathbb{R}^n \to \mathbb{R}^n$

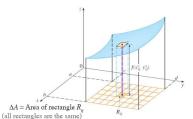
$$\int_{\gamma} F = \int_{a}^{b} F(g(t)) \cdot g'(t) dt$$

Instances of the Integral: IV Iterated Integral

$$f: \mathbb{R}^2 \to \mathbb{R}^1$$

$$\int_{a}^{b} \left(\int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x,y) dy \right) dx$$



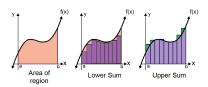


Instances of the Integral: V

The Multiple Integral A Generalization of Situation 1

$$\int_{a}^{b} f(x)dx = \lim_{\max(\Delta(x_i) \to 0} \sum_{i=1}^{n} f(x_i) \Delta x_i$$

 Δx_i = length of ith subdivision x_i = any point in ith subinterval



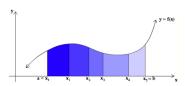
Instances of the Integral: V

Unequal Divisions

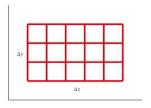
$$\int_{a}^{b} f(x)dx = \lim_{\max(\Delta(x_i) \to 0} \sum_{i=1}^{n} f(x_i) \Delta x_i$$

 Δx_i = length of ith subdivision x_i = any point in ith subinterval

Riemann Sums of Unequal Length Subintervals



First Extension: $f: \mathbb{R}^2 \to \mathbb{R}^1$ on a rectangle \mathcal{R}



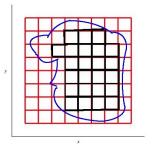
Cover \mathcal{R} with a grid G of horizontal and vertical lines mesh(G) = m(G) = maximum length of edge of interval in grid. Number Rectangles $R_1, R_2, ..., R_k$ with area of Rectangle R_i denoted by $A(R_i)$.

Pick a point $\vec{x_i}$ in R_i .

Form
$$\sum_{i=1}^k f(\vec{x_i})A(R_i)$$
; Take $\lim_{m(G)\to 0} \sum_{i=1}^k f(\vec{x_i})A(R_i)$

The limit is the integral of f over \mathcal{R} and is denoted $\int_{\mathcal{R}} f dA$

Second Extension: $f: \mathbb{R}^2 \to \mathbb{R}^1$ on a BOUNDED set \mathcal{B} Cover \mathcal{B} with a grid G of horizontal and vertical lines Let $R_1, R_2, ..., R_k$ be all bounded rectangles formed by G that lie inside \mathcal{B} .



Choose $\vec{x_i}$ in R_i .

Take
$$\lim_{m(G)\to 0} \sum_{i=1}^k f(\vec{x_i}) A(R_i)$$

The limit is the integral of f over \mathcal{B} and is denoted $\int_{\mathcal{B}} f dV$

<u>Theorem:</u> If $\int_{\mathcal{B}} f dV$ exists and iterated integrals exist for some orders of partial integration, then all of these integrals are equal.

Proof:

Apostol, *Mathematical Analysis* Sprivak, *Calculus on Manifolds*

When Does The Integral Exist?

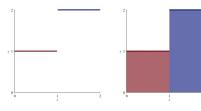
Idea: f does not have too many points of discontinuity

<u>Definition</u>: A set S has zero content if $\int_S 1 dV = 0$.

<u>Theorem</u>: Let $\mathcal B$ be a bounded set in $\mathbb R^n$ whose boundary has zero content. Let f be a bounded function bounded on $\mathcal B$. If f is continuous on $\mathcal B$ except perhaps on a set of zero content, then $\int_{\mathcal B} f dV$ exists.

Example from Calculus 1

$$f(x) = \begin{cases} 1 & 0 \le x \le 1, \\ 2 & 1 < x \le 2 \end{cases}$$



$$\int_{1}^{2} f(x) dx = 3$$

Generalize For a Function $f: \mathbb{R}^n \to \mathbb{R}^1$ Coordinate Rectangle in \mathbb{R}^n

$$\mathcal{R} = \{(x_1, x_2, ..., x_n) : a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, ..., a_n \le x_n \le b_n\}$$

Volume or Content of \mathcal{R}

$$V(\mathcal{R}) = (b_1 - a_a)(b_2 - a_2)...(b_n - a_n)$$

Grid: a finite set of n-1 =dimensional planes in \mathbb{R} parallel to the coordinate planes.

G divides \mathbb{R} into a finite number of bounded "rectangles"

 $\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_k$ and possibly other unbounded "rectangles,

The mesh m(G) of a grid = maximum "length" of a side of the rectangles $\mathbb{R}_1, \mathbb{R}_2, \dots, \mathbb{R}_k$

A set \mathcal{B} is bounded if it can be covered by a grid.

Then
$$\int_{\mathcal{B}} f dV = \lim_{m(G) \to 0} \sum_{i=1}^{k} f(\vec{x_i}) V(R_i)$$

if this limit exists. for all grids and all choices of $\vec{x_i}$ in R_i .

Then
$$\int_{\mathcal{B}} f dV = \lim_{m(G) \to 0} \sum_{i=1}^{k} f(\vec{x_i}) V(R_i)$$

if this limit exists. for all grids and all choices of $\vec{x_i}$ in R_i . Content of $\mathcal{B} = \int_{\mathcal{B}} 1 dV = \begin{cases} \text{Length of } \mathcal{B} & \text{if } \mathcal{B} \subset R^1, \\ \text{Area of } \mathcal{B} & \text{if } \mathcal{B} \subset R^2 \end{cases}$ Volume of \mathcal{B} if $\mathcal{B} \subset R^3$

Example Evaluate $\int_{\mathcal{B}} (x^2 + 5y) dV$ where $0 \le x \le 1, 0 \le y \le 3$ using the definition.

The existence of the integral is guaranteed since \mathcal{B} is bounded and $f(x,y)=x^2+5y$ is continuous on \mathcal{B}

Hence any sequence of Riemann sums with mesh going to 0 can be used.

For each n=1,2,... consider the Grid G_n consisting of the vertical lines $x=\frac{i}{n}, i=0,1,...,n$ and the horizontal lines $y=\frac{j}{n}, j=0,1,...,3n$ Then mesh of $G_n=\frac{1}{n}$ and Area of Rectangle $R_{ij}=\frac{1}{n^2}$

Riemann sum is
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{3n} \left[\left(\frac{i}{n} \right)^2 + 5 \left(\frac{j}{n} \right) \right] \right) A(R_{ij})$$

$$= \frac{1}{n^2} \left[\sum_{i=1}^n \sum_{j=1}^{3n} \left(\frac{i}{n} \right)^2 + \sum_{i=1}^n \sum_{j=1}^{3n} 5 \left(\frac{j}{n} \right) \right]$$

$$= \frac{1}{n^2} \left[3n \sum_{i=1}^n \left(\frac{i}{n} \right)^2 + n \sum_{j=1}^{3n} \frac{5j}{n} \right]$$

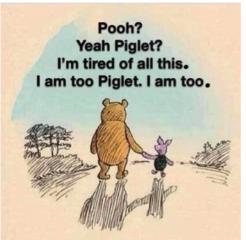
$$= \frac{1}{n^2} \left[\frac{3n}{n^2} \sum_{i=1}^n i^2 + \frac{5n}{n} \sum_{j=1}^{3n} j \right]$$

$$= \frac{1}{n^2} \left[\frac{3}{n} \frac{n(n+1)(2n+1)}{6} + 5 \frac{(3n)(3n+1)}{2} \right]$$

Riemann sum is
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{3n} \left[\left(\frac{i}{n} \right)^2 + 5 \left(\frac{j}{n} \right) \right] \right) A(R_{ij})$$

$$= \frac{1}{n^2} \left[\frac{1}{2} (n+1)(2n+1) + \frac{15}{2} n(3n+1) \right]$$
$$= \frac{1}{2} \left[(1+\frac{1}{n})(2+\frac{1}{n}) \right] + \frac{15}{2} \left[3+\frac{1}{n} \right]$$

Hence
$$\lim_{n\to\infty} = \frac{1}{2}(2) + \frac{15}{2}(3) = \frac{47}{2}$$



There Must Be a Better Way!

Evaluate As Iterated Integral

$$\int_{x=0}^{x=1} \int_{y=0}^{y=3} (x^2 + 5y) dy dx$$

$$= \int_{x=0}^{x=1} \left[x^2 y + \frac{5}{3} y^2 \right]_{y=0}^{y=3} dx$$

$$= \int_0^1 3x^2 + \frac{45}{2} dx = \left[x^3 + \frac{45}{2} x \right]_0^1 = \left(1 + \frac{45}{2} \right) - \left(0 + 0 \right) = \frac{47}{2}$$