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Alternative Solution to Problem A
Let F : R3 → R1 : F (x , y , z) = x2

4 + y2

9 + z2 − 6
and

g : R2 → R3 : g

(
x
y

)
=

 x
y

f (x , y)



Then F (g(x) = 0 for all x =

(
x
y

)
so the derivative F ′(g(x) is also identically 0.The Chain Rule gives

us(
x

2
,

2y

9
, 2z

)1 0
0 1
fx fy

 = (0, 0)
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(
x

2
,

2y

9
, 2z

)1 0
0 1
fx fy

 = (0, 0)

yields two equations

x

2
+ 2z fx = 0 and

2y

9
+ 2z fy = 0

Evaluate at x = 2, y = 3, z = −2 :

1− 4 fx(2, 3) = 0 and
2

3
− 4 fy (2, 3) = 0

so

fx(2, 3) =
1

4
, fy (2, 3) =

1

6
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Today:
Maxima and Minima of Real-Valued Functions



Let D be a subset of Rn and f : D → R1 be a real-valued function
with ~xo a point in D.

Definition: f has an absolute maximum at ~xo if f (~xo) ≥ f (~x) for
all ~x in D.

Note: ≥ makes sense because we are comparing real numbers.
f has a relative maximum at ~xo if there is a neighborhood N

around ~xo such that f (~xo) ≥ f (~x) for all ~x in N.



Theorem: Let ~xo be an interior point of D. If f is differentiable at
~xo and f has a relative maximum or minimum at ~xo ,

then f ′(~xo) = ∇(~xo) = ~0.

Proof: Suppose f has a relative maximum at ~xo
Let ~u be any unit vector in Rn.

Then
∂f

∂~u
= lim

t→0

f (~x0 + t~u)− f (~x0)

t

(a) Take lim
t→0+

:
−
+
≤ 0

thus
∂f

∂~u
= 0 for all ~u

(b) Take lim
t→0−

:
−
−
≥ 0

Taking ~u to be unit vectors gives ∇f (~x0) = 0
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Theorem: f differentiable at relative extrema implies
gradient is 0.

The Theorem Has Its Limitations:
(1) The function can have an extreme value at a point where

it is not differentiable.
Example: f (x , y) =

√
x2 + y2 has minimum at (0,0) but is not
differentiable there.

fx(x , y) = x√
x2+y2

, fy (x , y) = y√
x2+y2

,



Example: f (x , y) =
√
x2 + y2 has minimum at (0,0) but is not
differentiable there.

Analogue in Calculus I:
f (x) =

√
x2 = |x |



Theorem: f differentiable at relative extrema implies
gradient is 0.

The Theorem Has Its Limitations:
(2) We can have ∇f (~x0) = 0 but no extreme point at ~x0

∇f (x , y) = (2x , 2y)



There is a Maximum is one direction and a Minimum in another
Saddle Point



Quiz:
Name a Famous

Commercial Food Product
That Exhibits

a Saddle Point





Definition: A point ~x0 in the domain of f is a Critical Point of f if
(a) ∇f (~x0) = ~0

or
(b) ∇f does not exist at ~x0.

Extreme Values Can Occur at Critical Points or Points on
the Boundary



Example: Temperature Distribution on disk of radius 1 centered at
origin is T (x , y) = 2x2 + 4y2 + 2x + 1.

For Critical Points, examine ∇T = (4x + 2, 8y)
∇T = (0, 0) only at x = −1

2 , y = 0
which does lie inside the disk.

Note T (−1
2 , 0) = 2(14) + 4(02) + 2(−1

2) + 1 = 1
2 , and T (0, 0) = 1.
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Analyze Along Boundary:

x2 + y2 = 1 so y2 = 1− x2 and
T (x , y) = g(x) = 2x2 + 4(1− x2) + 2x + 1 = −2x2 + 2x + 5

Thus g ′(x) = −4x + 2, g ′′(x) = −4 so x = 1
2 gives a maximum.

x = 1
2 gives y2 = 1− 1

4 = 3
4 so y = ±

√
3
2

red numbers are values of the function
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Parametrize Boundary
x = cos t, y = sin t for 0 ≤ t ≤ 2π

T (x , y) = 2x2 + 4y2 + 2x + 1

= 2 cos2 t + 4 sin2 t + 2 cos t + 1

= 2 cos2 t + 2 sin2 t + 2 sin2 t + 2 cos t + 1

= 2 + 2 sin2 t + 2 cos t + 1 = 2 sin2 t + 2 cos t + 3

= H(t)

H(0) = 2 · 1 + 2 · 0 + 3 = 5,H(π) = 2 · 1 + 2 · −1 + 3 = 1
Now H ′(t) = 4 sin t cos t − 2 sin t = 2 sin t(2 cos t − 1) so

H ′(t) = 0 at sin t = 0 or cos t = 1
2

The first condition gives t = 0, t = π, the second occurs when
t = π

3 .
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Next Time:

Solving Constrained Optimization Problems
Using Lagrange Multipliers


