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MATH 223
Some Notes on Assignment 11
Exercises 17 and 18 in Chapter 4 and Problems A - C.

17. Show that the function f of one variable given by

g?sin for (z #0

#(z) = {0 forz =0

is differentiable for all = but f’ is not continuous at 0 so f is not continuously differentiable.

Solution: Wherever z # 0, f(z) is the product and composition of differentiable functions,
so it is differentiable. The interesting case is when L is undefined at z = 0. To determine
whether or not the function remains differentiable here we must inspect the limit of the
difference quotient.

f(0+h) - f(0)

. h2ginl
/ — 1 1 h
F(0) = lim h ==
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if the limit exists. The function sinz is bounded above and below by 1, —1 for all z, so
we can create the following upper and lower bounds:

—h < hsin% < hso
, . ! .
lim —A < limhsin—- <limh
h—0 h—0 h h—0

0< limhsinl <0.
h—0 h
The derivative of f exists at at z = 0 and is equal to 0.
Using the rule for differentiation in the single-variable case we can find the derivative of
f to be

flz) = 2zsint —cosl:z#0
0:z2=0

For f'(z) to be continuous, the limit of f’(z) as = approaches 0 must be zero. That is,

lim (2:1: sin —1- _ cos 1)
z—0 A T

must equal 0; however, the first term in this limit will approach 0 as z gets small while
the sécond term will achieve the values —1 and 1 on any neighbourhood of z = 0. The
limit of the derivative of f does not then exist at z = 0.

18: Replace z? with z3 in the previous exercise and determine if the resulting function
is continuously differentiable everywhere.

Solution: To determine whether or not f(z) is continuously differentiable we must first be
certain that it is differentiable. In the case that z # 0, f(z) is a product and composition



