CLK	155	10
LLI	20	40

HANDOUTS

NOTES ON ASSIGNMent 9 Assignment 10 Differentiation

EXAM: TONIGHT MATH 223 A: AXINN 229

MATH 223 B: AXINN 232

TODAY: BEGIN CHAPTED 4

TOPIC: DIFFERENTIABILITY

START WITH: J: RM -> R 1 REAL-VALUED.

EVENTUALLY F: RM -> R VECTOR- VALUED.

DERIVATIVE AT A POINT TURNS OUT TO BE Mx M matrix

BUT FIRST ... LIMITS AND CONTINUITY

LIMITS AND CONTINUITY

Preliminary Concepts	
Open Sets Interior Point	rt
CLUSED SET Boundary Po	
Limit Point Neighbork	
EXAMPLE: Let 5= 112-(2,3) 44} U 1 (8,0)	3 }
DOINT WITCHAN ADMIT	0 /

POINT	INTERIOR POINT	LIMIT Point	Bounday
Q	YES	465	NO
A	NO	.465	YES
P	NO	NO	YES
W	NO	NO	NO

DIFFERENTIABILITY = LOCAL LINEARITY
= Approximatable by Tangent Object
 Let $M = f'(a)$
χ
$f(x) \approx f(a) + f'(a) (x-a)$
or $f(x) - f(a) \approx m(x-a)$
OR f(x)-f(a) - m(x-a) 20
 lin f(x)-f(a)-m(x-a)=0 x-a 1x-a1
Generalizing: S: IRM - IRM
$\lim_{x \to \infty} f(\vec{x}) - f(\vec{x}) - M(\vec{x} - \vec{a}) = 0$
$\vec{x} \rightarrow \vec{a}$ $(\vec{x} - \vec{a})$
For some mxn matrix M
Special CASE: M=1, M=2
M 15 1 x 2 materx
M 15 1×2 materx $\nabla f = (f_x, f_y)$

```
Example f(x,y) = x2+2xy-y2 at (-1,2)
  P(-1,2) = -7
 Lx(x,y)=2x+2y = Vf(-1,2)=(2,-6)
  Sy (x, y) = 2x -2y
 Equation of tangent plane Z = -7 + (2,-6) \cdot (x+1,y-2) = -7 + 2x+2 - 6y + 12
        7=7+2x-6y
Review meaning of 5, (-1,2) = 2 and Jy (-1,2) = -6
          what is range of change of I
               at (-1,2) if we approach along
                - direction given by \sqrt{3} = (3,4)?
F-3 = lun f(-1+3E,2+4E) = f(-1,2)
   = lin (-1+3t)2+2(-1+3t)(2+4t) - (2+4t)2 - (-7)
   = lin 17±2-18± = lin (17±-18) = -18
NOTE: (VF) · V = (2, -6) · (3,4)
               = (2)(31+(-6)(4)
               =6-24=-18
    IS THAT A COINCIDENCE ?
```

Multivariable Calculus Chapter:

DIFFERENTIABLITY

Section 1: Limits and Continuity

Part A: Neighborhoods

Definition: A δ -ball in \mathbb{R}^n with radius $\delta > 0$ and center x_o is the set of all points \mathbf{x} in \mathbb{R}^n such that $|\mathbf{x} - x_o| < \delta$.

Definition: A neighborhood of a point p in \mathbb{R}^n is a δ -ball with center at p for some $\delta > 0$.

Definition: If S is a set in \mathbb{R}^n and p is a member of S, then p is an interior point of S if there is some neighborhood N of p entirely contained in S.

Definition: A set S in \mathbb{R}^n is open if every point of S is an interior point of S.

Definition: If S is a set in \mathbb{R}^n , then **p** is a **limit point** of S if every neighborhood of **p** contains a point **q** of S which is distinct from **p**.

Note: (1) \mathbf{p} is a limit point of S if for every given $\delta > 0$, there is a point \mathbf{q} in S such that $0 < |\mathbf{p} - \mathbf{q}| < \delta$.

(2) p can be a limit point of S without belonging to S.

Definition: A boundary point of a set S in \mathbb{R}^n is a point p such that every neighborhood of p contains both a point in S and a point not in S. The boundary of a set is the set of all boundary points of S.

Definition: A set in \mathbb{R}^n is **closed** if it contains all of its boundary points.

Part B: Limits

Definition: Suppose f is a function from \mathbb{R}^n to \mathbb{R}^m . Let y_o be a point in \mathbb{R}^m and x_o a limit point of the domain of f. Then y_o is the **limit** of f at x_o if for every $\varepsilon > 0$, there is a $\delta > 0$ such that $|f(x) - y_o| < \varepsilon$ whenever x is in the domain of f and satisfies $0 < |x - x_o| < \delta$.

Notation: We write $\lim_{x\to x_0} f(x) = y_0$

Note: An alternative way to phrase the last sentence in the definition of limit is: y_0 is the limit of f at x_0 if for every neighborhood N_y of y_0 , there is a neighborhood N_x of x_0 such that f(x) lies in N_y whenever x is a member of N_x other than x_0 .

Theorem: Limits are unique: If $\lim_{x\to x_0} f(x) = y_1$ and $\lim_{x\to x_0} f(x) = y_2$ then $y_1 = y_2$.

Theorem: Given $f: \mathbb{R}^n \to \mathbb{R}^m$ with coordinate functions $f_1, ..., f_m$ and a point $\mathbf{y_0} = (y_1, ..., y_m)$ in \mathbb{R}^m , then $\lim_{\mathbf{x} \to \mathbf{x_0}} f(\mathbf{x}) = f(\mathbf{x_0})$ if and only if $\lim_{\mathbf{x} \to \mathbf{x_0}} f_i(\mathbf{x}) = y_i$, for i = 1, ..., m

Part C: Continuity

Definition:

A function f is continuous at x_o if

(a) x_o is in the domain of f

(b) $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$

Other ways of phrasing continuity are

- (a) f is continuous at x_o if for each neighborhood N of $f(x_o)$, there is a neighborhood M of x_o such that f takes each of point of M into some point of N.
- (b) f is continuous at x_o if for every open set U containing $f(x_o)$, the set of points f maps into U is open.

Theorem: A vector function is continuous at a point if and only if all its coordinate functions are continuous there.

Theorem: The functions $P_k := \mathbb{R}^n \to \mathbb{R}$ where $P_k(x_1,...,x_n) = x_k$ are continuous for k = 1,2...,n. The function P_k is called the kth coordinate projection.

Theorem: The functions $S: \mathbb{R}^2 \to \mathbb{R}$ and $M: \mathbb{R}^2 \to \mathbb{R}$ defined by S(x,y) = x + y and M(x,y) = xy are continuous.

Theorem: If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ are continuous then the composition g of is continuous wherever it is defined.

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is a linear function if each coordinate function has the form $f_k(x_1,...x_n) = a_{k1}x_1 + ... + a_{kn}x_n$ for some scalars a_{kj} .

Theorem: A linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous.