1. (a) CLAIM: For any graph G, if G has a loop or parallel edges, then G is not acyclic.

PROOF: Let a graph G be given, and suppose G has a loop \(\bigcirc = \) 1-cycle in G.

\[\text{Q.E.D.} \]

\(\square \) G has parallel edges \(\bigcirc = \) 2-cycle in G.

In either case, G contains a cycle, so G is not acyclic. \(\blacksquare \)

(b) For any graph G, if G is acyclic, then G has no loops or parallel edges.

\[\text{Q.E.D.} \]

(c) 1 & 2-cycles give loops & parallel edges, as in (a), so the minimum number of vertices in a simple cycle is 3.

(d) CLAIM: For every simple cycle \(C \), there exist vertices \(v_0, v_1 \) of \(C \) with two distinct paths connecting them.

PROOF: Let a simple cycle \(C \) be given.

By part (c), \(C \) has at least 3 vertices.

Take two adjacent ones, \(v_0 \) & \(v_1 \).

Then (1) the edge between them and (2) the rest of the cycle give two distinct paths connecting them. \(\blacksquare \)

2. (a) CLAIM: Every tree \(T \) is a simple graph.

i.e. \(\forall n \geq 1, \) every tree \(T \) with \(n \) vertices is simple.

PROOF: \(P(1) \): Let a tree \(T \) with 1 vertex be given.

By definition of a tree, \(T \) consists of one isolated vertex. This is simple because it has no edges.

\[\forall n \geq 1, \] \(P(n) \rightarrow P(n+1) \): \(\rightarrow \) \(\forall n \geq 1, \) every tree \(T \) with \(n+1 \) vertices is simple.

Let \(n \geq 1 \) be given, and suppose \(P(n) \), i.e., every tree \(T \) with \(n \) vertices is simple (x).

Let a tree \(T' \) with \(n+1 \) vertices be given.

By definition of a tree, \(T' \) is built from some tree \(T \) with \(n \) vertices by adding a leaf & pendant edge.

By (x), \(T \) is simple, i.e., \(T \) has no loops or parallel edges.

The only new edge in \(T' \) is a pendant edge to a new vertex, so it is neither a loop nor parallel to another edge.

Thus \(T' \) is also simple. \(\blacksquare \)
(6) **Claim**: For every tree T and each pair of vertices v_0, v_1, there is a unique path connecting v_0 and v_1.

Proof: **$P(1)$**: Let a tree T with 1 vertex be given, and let vertices v_0, v_1 of T be given. By the definition of a tree, T consists of one isolated vertex, so $v_0 = v_1$, and there are no edges, so there is just one path (of length 0) connecting v_0 and v_1.

Let $n \geq 1$ be given, and suppose $P(n)$ (see $P(n)$ above).

Let a tree T' with $(n+1)$ vertices be given, and let vertices v_0, v_1 of T' be given.

By the definition of a tree, T' is built from some tree T with n vertices by adding a leaf and a pendant edge.

- If neither v_0 nor v_1 is this new leaf, then by (*) there is a unique path in T connecting v_0 and v_1. Any path involving our new leaf must start or end there, so the path in T is the unique path in T' connecting v_0 and v_1.

- If $v_0' = v_1'$ is the new leaf above, there is a unique path of length 0 connecting them.

- Otherwise, say $v_0' \in T$ and v_1' is the new leaf.

By (\ast), there is a unique path in T connecting v_0' and the vertex x adjacent to the leaf. Adding the pendant edge and the new leaf gives the unique path in T' connecting v_0' to the leaf v_1'.
(c) Claim: If T is a tree, then $n(T) = e(T) + 1$

I.e., $\forall n \geq 1$, if T is a tree with n vertices, then $n(T) = e(T) + 1$.

Proof. P(1): Suppose that T is a tree with 1 vertex.

Then T consists of one isolated vertex & no edges.

Thus $n(T) = 1$ & $e(T) = 0$, so $n(T) = e(T) + 1$.

Let $n \geq 1$ be given,

and suppose P(n), i.e., if T is a tree with n vertices, then $n(T) = e(T) + 1$ (1)

Suppose that T' is a tree with $(n+1)$ vertices.

By definition of a tree, T' is built from a tree T with n vertices by adding a loop edge and a pendant edge.

Thus, $n(T') = n(T) + 1$ and $e(T') = e(T) + 1$.

And by (1), $n(T) = e(T) + 1$,

so $n(T') = n(T) + 1 = [e(T) + 1] + 1 = e(T') + 1$. \(\blacksquare\)
3. (a) **Every tree is nonempty**, directly from the definition of a tree: we start with one vertex and add pairs of vertices & edges to it.

 (b) **Claim**: **Every tree** T **is acyclic**

 Proof: let a tree T be given,

 and suppose (for contradiction!) that T contains a cycle C.

 By 1(d), there exist vertices v_0, v_1 of C (and thus of T) with two distinct paths in C (and thus in T) connecting them.

 This contradicts 2(b): in a tree, there must be exactly one path connecting them.

 (c) **Every tree** T **is connected** follows immediately from 2(b),

 which is just the definition of "connected" with the extra condition of uniqueness.

 (d) **Claim**: if G has a spanning tree T, then G is connected v_0, v_1.

 Proof: suppose that G has a spanning tree T.

 let vertices v_0, v_1 of G be given;

 because T is a spanning tree for G, v_0, v_1 are vertices of T.

 so by 2(b), there is a unique path in T connecting v_0, v_1.

 but T is a subgraph of G, so this is a path in G connecting v_0, v_1. ■
3. (a) **Every tree is nonempty, directly from the definition of a tree:**
 We start with one vertex and add pairs of vertices & edges to it.

 (b) **Claim:** **Every tree** T **is acyclic**

 Proof: Let a tree T be given,
 and suppose (for contradiction!) that T contains a cycle C.
 By (1)(a), there exist vertices v_0, v_1 of C (and thus of T)
 with two distinct paths in C (and thus in T) connecting them.
 This contradicts (2)(6): in a tree, there must be exactly
 one path connecting them.

 (c) **Every tree** T **is connected** follows immediately from (2)(6),
 which is just the definition of "connected" with the extra
 condition of uniqueness.

 (d) **Claim:** **If G has a spanning tree** T, **then** G **is connected** v_0, v_1.

 Proof: Suppose that G has a spanning tree T.
 Let vertices v_0, v_1 of G be given;
 because T is a spanning tree for G, v_0, v_1 are vertices of T.
 So by (2)(6), there is a unique path in T connecting v_0, v_1.
 But T is a subgraph of G, so this is a path in G connecting v_0, v_1.

 For each pair of vertices v_i, v_j of G, in G!

 There is a path connecting v_i, v_j.

4. **Claim:** If \(G \) is nonempty & connected, and if \(G \) is not a tree, then \(G \) contains a cycle.

Proof: Suppose that \(G \) is nonempty & connected, and that \(G \) is not a tree.

Because \(G \) is nonempty & connected, we can find a spanning tree \(T \) for \(G \). \(T \) is a subgraph of \(G \) and contains all vertices of \(T \), but \(G \) is not a tree (\(G \neq T \)), so \(G \) contains at least one edge not in \(T \).

Call this edge \(e \), and say it connects \(v_0 \) to \(v_1 \).

- If \(v_0 = v_1 \), we have a 1-cycle in \(G \).
- If \(v_0 \neq v_1 \), by 2(b), there is a path in \(T \) connecting \(v_0 \) & \(v_1 \); adding \(e \) to this path forms a cycle in \(G \).

In either case, \(G \) contains a cycle.

VIA THE CONTRAPPOSITIVE: If \(G \) is nonempty, connected, & acyclic, then \(G \) is a tree.

(In light of 3(a,b,c), \(G \) is a tree \(\implies G \) is nonempty, connected, & acyclic)

5. **Suppose that we add one edge to a tree \(T \), obtaining a graph \(G \).**

(a) By 2(c), \(v(T) = e(T) + 1 \) (because \(T \) is a tree). Adding one edge gives \(v(G) = v(T) \) and \(e(G) = e(T) + 1 \), so \(v(G) = v(T) = e(T) + 1 = e(G) = e(G) + 1 \).

By the contrapositive to 2(c), \(G \) is not a tree.

But \(G \) is connected and nonempty (because \(T \) was, as a tree), so by Problem 4, \(G \) has a cycle.

(b) Removing any edge of this cycle to get a new graph \(G' \) gives us a tree again (because it will be nonempty & connected but will now have \(v(G') = e(G') + 1 \) again).