1. If \(f, g : \mathbb{N} \rightarrow [0, \infty) \):

 (a) \(f(n) = O(g(n)) \) means \(\exists C > 0, N \) such that \(\forall n \geq N, |f(n)| \leq C \cdot g(n) \)
 (i.e., \(f(n) \) is eventually no larger than some constant multiple of \(g(n) \))

 (b) There must be some constant multiple of \(g \) \((\exists C > 0) \)
 that \(f(n) \) is no larger than \((f(n)) \leq C \cdot g(n) \)
 when \(n \) is sufficiently large \((\exists N, \forall n \geq N) \)

 (ii) If we plot the graphs of \(f, g, \) and \(C \cdot g \):

 (iii) The point of Big-O notation is that it allows us to think about
 the overall growth rate of a function without worrying about
 little details (see Problem #4!).

 (c) (i) Nothing here equals anything \((\text{the } = \text{ is used as a description, or better yet, a } \epsilon) \).

 (ii) What this is really about is the whole function, not just
 an individual value \(f(n) \) vs. \(g(n) \).

 (All in all, this should be written \(f \in O(g) \)
 to better reflect the actual concept)

 (d) \(f_1(n), f_2(n) = O(g(n)) \Rightarrow f_1(n) \pm f_2(n) = O(g(n)) \)
 (Similarly for constant multiples: \(f(n) = O(g(n)) \Rightarrow A \cdot f(n) \in O(g(n)) \)

 (e) \(f_1(n) = O(g_1(n)) \land f_2(n) = O(g_2(n)) \Rightarrow f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n)) \)
 \(\text{both bounds are used!} \)
2. (a) \(f(n) = \Theta(g(n)) \) means \(\exists c > 0, N \) such that \(\forall n \geq N, f(n) = c \cdot g(n) \)

The opposite inequality! \(\nabla \)

\(f \) is eventually \underbrace{\text{smaller than}}_{\text{some positive multiple of } g}

(b) \(f(n) = \Theta(g(n)) \) means both \(f(n) = \mathcal{O}(g(n)) \) \& \(f(n) = \Omega(g(n)) \)

I.e., \(f \) is eventually between two positive multiples of \(g \), so \(f \& g \) are roughly comparable in size.

3. When \(n \) is large, a few basic categories give us a starting point for understanding \(\mathcal{O}, \Omega, \) and \(\Theta \):

\[
\begin{array}{l|l|l|l|l|l|l|l|l}
\text{(exponentials, base > 1)} & \text{(positive powers of } n) & \text{logs} \\
\hline
\mathcal{O}(n^{10}) & \mathcal{O}(n^{9}) & \ldots n & \ldots \sqrt{n} & \ldots n & n^{2} & n^{3} & \ldots 1.0 & 2.0 & 10.0 & 100.0 & \ldots n! & n^{n} \\
\hline
\mathcal{O}(n) & \mathcal{O}(\log n) & \log \log n & \log n \\
\hline
\mathcal{O}(1) & \mathcal{O}(\log n) \\
\hline
\mathcal{O}(c) & \mathcal{O}(c) \\
\hline
\mathcal{O}(n) & \mathcal{O}(n) \\
\hline
\end{array}
\]

* Anything farther left is \(\mathcal{O}(\text{anything farther right}) \)

* Anything farther right is \(\Omega(\text{anything farther left}) \)

* Other than nonzero constants, none of these are \(\Theta(\text{any other}) \)

\(\mathcal{O} \) due to our rule for \(\text{Big-O} \), "smaller" summands

\(\& \) constant factors are simply absorbed into larger ones!

\(\Theta \) don't forget that our \(\cdot \) rule means that non-constant factors aren't absorbed!
4. (a) \[\frac{5n^3 + 3n + 1000}{n^3} = O(n) \]

(b) \[\frac{\log(n^3) + 2n}{n^3} = O(n) \]
\[\text{NOTE THAT } \log(n^3) = 3 \log n \]

(c) \[\frac{8n^{100} + 2^n + \log n}{n^{100}} = O(2^n) \]

(d) \[\frac{100^n + 4n^m + n!}{n^{100}} = O(n!) \]

(e) \[\frac{100n + n^4}{n^{100}} \left(n^2 + 2^n \right) = O(n^{100}) \]

(f) \[\left(\frac{\log \log n + 10000}{n^{100}} \right) \left(\frac{\log n + n + n^n}{n^{100}} \right) = O(n \cdot \log \log n) \]

5. (a) CLAIM: \[1000 = O(\log n) \], i.e., \(\exists C > 0, N \) such that \(\forall n \geq N, \ 1000 \leq C \log n \)

PROOF: TAKE \(C = 1000 > 0 \)
\(\& \quad N = 2. \)

Let \(n \geq 2 \) be given \(\Rightarrow \) so \(n \geq 2. \)

THEN \(C \cdot \log n \geq 1000 \cdot \log 2 = 1000 \cdot 1 = 1000. \]

(b) CLAIM: \[100n = O(n^2) \], i.e., \(\exists C > 0, N \) such that \(\forall n \geq N, \ 100n \leq C \cdot n^2 \)

PROOF: TAKE \(C = 100 > 0 \)
\(\& \quad N = 1. \)

Let \(n \geq 2 \) be given \(\Rightarrow \) so \(n \geq 1. \)

THEN \(n \leq n^2, \) so \(100n \leq 100n^2 = C \cdot n^2. \)
(c) CLAIM: \(3^n = \Omega(100 \cdot 2^n) \), i.e., \(\exists C > 0, N \) such that \(\forall n \geq N, \ 3^n \geq C \cdot 100 \cdot 2^n \)

PROOF: TAKE \(C = \frac{1}{100} > 0 \)
\[\text{& } N = 1. \]

LET \(n \geq N \) BE GIVEN \(\text{& } n \geq 1. \)

THEN \(3^n \geq 2^n = \frac{1}{100} \cdot 100 \cdot 2^n = C \cdot 100 \cdot 2^n \), \(\square \)

(d) \(100n^2 = \Theta(n^2) \) MEANS \((\exists C_1 > 0) \) \& \((\exists C_2 > 0) \) \(\forall n \geq N \), \(C_1 \cdot n^2 \leq 100n^2 \leq C_2 \cdot n^2 \)

So this is two little sub-proofs:

(i) CLAIM: \(100n^2 = \Theta(n^2) \), i.e., \(\exists C > 0, N \) so that \(\forall n \geq N, \ 100n^2 \leq C \cdot n^2 \)

PROOF: TAKE \(C = 100 > 0 \)

AND \(N = 1. \)

LET \(n \geq N \) BE GIVEN \(\text{& } n \geq 1. \)

THEN \(100n^2 = C \cdot n^2, \) \(\text{so } 100n^2 \leq C \cdot n^2 \), \(\square \)

(ii) CLAIM: \(100n^2 = \Omega(n^2) \), i.e., \(\exists C > 0, N \) so that \(\forall n \geq N, \ 100n^2 \geq C \cdot n^2 \)

PROOF: TAKE \(C = 100 > 0 \)

AND \(N = 1. \)

LET \(n \geq N \) BE GIVEN \(\text{& } n \geq 1. \)

THEN \(100n^2 = C \cdot n^2, \) \(\text{so } 100n^2 \geq C \cdot n^2 \), \(\square \)

\(\square \) NOTE THAT IN GENERAL, THE "\(C \)" IN THESE TWO SECULARS OF A \(\Theta \)-\(\Omega \) PROOF COULD BE DIFFERENT — IN THIS SIMPLE EXAMPLE, THEY END UP THE SAME!
6. (a) Comparing a to each of the 1023 elements and never finding it
will make 1023 comparisons.

(b) Starting with 1023 elements:

\[\begin{array}{c}
\text{10 comparisons)} \\
\text{This is exactly } \\
\log(1023+1)
\end{array} \]

(i) \(a_{511}, a_{254}, a_{935}, a_{439}, a_{941}, a_{1003}, a_{1024}, a_{1022}, a_{1022} \)

\[\frac{0 + 1022}{2} \quad \frac{512 + 1022}{2} \quad \frac{743 + 1022}{2} \quad \frac{950 + 1022}{2} \quad \frac{951 + 1022}{2} \quad \frac{1024 + 1022}{2} \quad \frac{1022 + 1022}{2} \]

(MIDDLE ELEMENTS OF THE REST, AT EACH STEP)

(ii) \(a_{511}, a_{255}, a_{127}, a_{63}, a_{31}, a_{15}, a_{7}, a_{3}, a_{1}, 90 \)

\[\frac{0 + 1022}{2} \quad \frac{510 + 1022}{2} \quad \frac{1034}{2} \quad \frac{272}{2} \quad \frac{42}{2} \quad \frac{14}{2} \quad \frac{6}{2} \quad \frac{3}{2} \quad \frac{1}{2} \]

(c) As in part (a), the linear search will make \(n = 2^{k-1} \) comparisons;
As in part (b), the binary search will make \(\log(n+1) \) comparisons.

\[\text{\textbf{\(\therefore \) The linear search is } } O(n), \text{ and the binary search is } O(\log n) \]

\[\text{\((\log(n+1)) \leq \log(n+n) \)} \]
\[\text{\(= \log(2n) = 1 + \log n, \)} \]
\[\text{which is } O(\log n) \]

7. E.G.: 1 3 2 9 1 0 1 5 2 3 1 4 1 6 1 2 0 2 2 3 5 4

Goal: Find \(\gamma \), path from top-left with maximum sum of \(1 \)'s encountered.

(a) Brute Force Search (of all such paths):

(i) There are \((9^9) \) = 70 such paths to search.

(ii) Each path encounters 9 numbers, so the sum takes 8 additions.

(iii) In total, this gives 70 x 8 = 560 additions.
(b) **Dynamic Programming**: For the example above:

(i) 3 + 2 + 4
 1 + 2 + 4
 1 + 12

(ii) 4(1 + 2 + 3 + 4) = 40 additions

(iii) **The Dynamic-Programming Algorithm is Quite a Bit More Efficient**!

What makes this possible is that many, many of the 360 additions involved the same numbers (there are only 25 #’s in the grid!), and that knowing the maximum sum possible to each point along the way as we build downward & rightward dictates the rest of the maximum sums to other points past it.

(d) For a general n x n grid:

- **Brute-Force Checks** \(\binom{2(n-1)}{n-1} \) paths, each with \(2(n-1) \) additions, so \(\frac{(2n-2)!}{(n-1)!2^{n-2}} \) additions.

- **Dynamic Programming** takes \(4(1 + 2 + \ldots + n-1) = 4 \frac{(n-1)n}{2} = 2(n^2 - n) \) additions.

(e) With a Little Computational Help:

- **Brute-Force** for \(n = 11 \) gives < 1 billion additions, and for \(n = 12 \) gives > 1 billion. \(\therefore n = 12 \).

- **Dynamic Programming** for \(n = 22,361 \) gives < 1 billion additions, and for \(n = 22,362 \) gives > 1 billion. \(\therefore n = 22,362 \).