Functions

- Suppose that X and Y are sets; a *function* $f: X \to Y$ is a relation from X to Y, which we could write as $x \stackrel{f}{\mapsto} y$ or $f: x \mapsto y$, having two properties:
 - $-\forall x \in X, \exists y \in Y \text{ with } x \xrightarrow{f} y$ [every $x \in X$ has some corresponding $y \in Y$], and
 - $-(x \xrightarrow{f} y) \land (x \xrightarrow{f} y') \Rightarrow y = y'$ [each $x \in X$ corresponds to just one $y \in Y$].

For each $x \in X$, we denote this unique $y \in Y$ with $x \stackrel{f}{\mapsto} y$ by f(x).

• Independent of its formal definition as a relation, the best way to think about a function $f: X \to Y$ is as an active operation that picks up each element of X and *maps* it (sends it) to some element of Y:

A function
$$f: X \to Y$$
 is a rule that assigns to each $x \in X$ exactly one value $f(x) \in Y$.

- The second property in the formal definition of function could be loosely written as " $x = x' \Rightarrow f(x) = f(x')$ "; in words, this says a function must be **well-defined**, i.e., if you give it the same inputs, it produces the same outputs. We use this property all the time with little note—e.g., every time that we apply a function to both sides of an equation.
- We often express functions via expressions, as in "the function $f(x) = x^2 + 1$ ".
 - This should *not* be viewed as an equation, but rather, as a convenient way of expressing the *rule* $f: x \mapsto x^2 + 1$. In this case, the domain and codomain are often clear from context; however, it is always best to explicitly state the domain, codomain, and rule for a function, i.e.: "the function $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2 + 1$."
- Suppose that $f: X \to Y$ is a function; then we define the following terms:
 - The *domain* of f is X. [its set of input values]
 - The *codomain* of f is Y. [the set into which it sends its results—note that it need not fill that set!]
 - Two functions $f, f': X \to Y$ are **equal** (f = f') when $\forall x \in X, f(x) = f'(x)$ [they represent the same rule]
 - The *range* (or *image*) of f is the set $\{f(x) : x \in X\} \subset Y$ [the subset of Y that actually gets hit by f]
 - · Note that this could be more explicitly expressed as $\{y \in Y : \exists x \in X \text{ with } f(x) = y\}$.
 - f is *injective* means $f(x) = f(x') \Rightarrow x = x'$. [equivalently, that $x \neq x' \Rightarrow f(x) \neq f(x')$]
 - · This means that no two distinct elements of x map to the same element of Y (a.k.a. f is "one-to-one").
 - · Note well that this is the *converse* of the second part of what it means to be a function: we can always apply a function to both sides of an equation; for an injective function, we can also *remove* it from both sides!
 - f is *surjective* means that the range of f is all of Y. [equivalently, $\forall y \in Y, \exists x \in X \text{ with } f(x) = y$]
 - \cdot This means that every element of Y is "hit" by some element of X (a.k.a. f is "onto").
 - f is *bijective* means that f is both injective and surjective.
 - · A bijective function $f: X \to Y$ pairs each element of X with exactly one element of Y, and vice-versa.

Compositions and inverses

• The *composition* of two functions $f: X \to Y$ and $g: Y \to Z$ simply applies one and then the other:

$$g \circ f : X \to Z$$
 is given by $(g \circ f)(x) = g(f(x))$.

[Note that function compositions are read right-to-left, because the inputs are written on the right!]

- If X is a set, the *identity* function $id_X : X \to X$ does nothing: $id_X : x \mapsto x$.
 - It is very quick to prove that this function is bijective!
- Two functions $f: X \to Y$ and $g: Y \to X$ are *inverses* means that they "undo" each other:

$$\forall x \in X, \ g(f(x)) = x \land \forall y \in Y, \ f(g(y)) = y.$$

- Intuitively, f and g send elements back where the other function mapped them from, "reversing" each others' arrows.
- In terms of compositions, this can be very cleanly stated as $g \circ f = id_X$ and $f \circ g = id_Y$.
- $-f: X \to Y$ has an inverse just when f is bijective, and in this case, its inverse is unique; we denote it by f^{-1} .

[This is an inverse, not a power!]